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Motivation
To explain the success of modern deep learning, the study of
global convergence of gradient descent for non-convex objec-
tives is increasingly important, because in practice gradient
descent and its variants can achieve zero error on a highly
non-convex loss function of a deep neural network.

Inspired by recent results in continuous-time, we investigate
a algorithmic equivalence methodology for proving conver-
gence of non-convex functions that are reparameterizations of
convex functions.

Continuous-time Reparameterization
[1] analyzes equivalence of gradient flow and mirror flow. In
particular, the ODE for mirror flow on f with regularizer R

∇̇R(x(t)) = −η∇f(x(t))

is equivalent to gradient flow on f̃ = f ◦ u with x(t) = q(u(t)

˙u(t) = −ηf̃(u(t)) ,

where
[∇2R(x)]−1 = Jq(u)Jq(u)

⊤.

mirror flow on convex f

⇕

gradient flow on
nonconvex function f̃

In a follow-up work [2], the analysis for continuous-time was
extended to discrete-time, on some specific algorithms with
relative-entropy regularization.

Canonical example: Exponentiated Gradient (EG)

• R is negative entropy, q(u) = u⊙ u

• Analyzed in discrete online settings in [2]

Open question by [1,2]: can we extend this reparameteriza-
tion approach to general online convex optimization, in the
discrete-time setting?

Our Result
We show that in the discrete-time setting, online gradient de-
scent applied to non-convex functions is an approximation of
online mirror descent applied to convex functions under repa-
rameterization, through a new algorithmic equivalence tech-
nique.

2 Algorithm

Algorithm 1 Online Mirror Descent

1: Input: Initialization x1 ∈ K, regularizer R.
2: for t = 1, . . . , T do
3: Predict xt, observe ∇ft(xt)
4: Update

yt+1 = (∇R)−1(∇R(xt)− η∇ft(xt))

xt+1 = ΠR
K(yt+1)

5: end for

⇕

Algorithm 2 Online Gradient Descent

1: Input: Initialization u1 ∈ K′ = q−1(K).
2: for t = 1, . . . , T do
3: Predict ut, observe ∇f̃t(ut) = ∇ft(q(ut)))
4: Update

vt+1 = ut − η∇f̃t(ut)

ut+1 = ΠK′(vt+1)

5: end for

Main Theorem
Theorem: Given an instance of convex OMD (Alg. 1) which
satisfies some assumptions on the smoothness of q, q−1, R, and

[∇2R(x)]−1 = Jq(u)Jq(u)
⊤ ,

the regret of Alg. 2 is bounded by O(T 2/3) by setting η =
Θ(T−2/3).

Algorithmic Equivalence Analysis
• MD Bregman divergence approximately equivalent to Eu-

clidean in reparameterized space

DR(x||y) ≈
1

2
∥q−1(x)− q−1(y)∥22

• The OMD and OGD iterates are close after a single step:

xt = q(ut) ⇒ ∥xt+1 − q(ut+1)∥2 = O(η3/2).

• View the OGD update as a perturbed version of OMD, and
combine it with the fact that the OMD algorithm can toler-
ate bounded noise per trial.

Reverse Direction
The other direction from OGD to OMD is even more inter-
esting: given a non-convex OGD, can we show its global
convergence by showing the existence of a convex OMD
which corresponds to OGD implicitly?

A necessary condition:

• There exists a function q such that f̃t(u) can be written as
ft(q(u)) where ft is convex.

• q is a C3-diffeomorphism, and Jq(u) is diagonal.

• q(K′) is convex and compact.

Theorem: running Algorithm 2 on loss f̃t(u) has regret upper
bound Õ(T

2
3 ).

Open Problem
Can this technique get optimal O(

√
T ) regret bounds? Close-

ness of MD and GD are not close enough by existing analysis
because of projection. Tighter analysis may be possible.
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