# Non-convex online learning via algorithmic equivalence

Udaya Ghai<sup>12</sup>, Zhou Lu<sup>12</sup>, Elad Hazan<sup>12</sup>, <sup>1</sup>Google AI Princeton <sup>2</sup>Department of Computer Science, Princeton University

#### Motivation

To explain the success of modern deep learning, the study of global convergence of gradient descent for non-convex objectives is increasingly important, because in practice gradient descent and its variants can achieve zero error on a highly non-convex loss function of a deep neural network.

Inspired by recent results in continuous-time, we investigate a algorithmic equivalence methodology for proving convergence of non-convex functions that are **reparameterizations** of convex functions.

### **Continuous-time Reparameterization**

[1] analyzes equivalence of gradient flow and mirror flow. In particular, the **ODE** for mirror flow on f with regularizer R

$$\dot{\nabla R}(x(t)) = -\eta \nabla f(x(t))$$

is equivalent to gradient flow on  $\tilde{f} = f \circ u$  with x(t) = q(u(t))

$$\dot{u(t)} = -\eta \tilde{f}(u(t)) ,$$

where

$$[\nabla^2 R(x)]^{-1} = J_q(u)J_q(u)^\top$$

mirror flow on **convex** *f* 

gradient flow on **nonconvex** function  $\tilde{f}$ 

In a follow-up work [2], the analysis for continuous-time was extended to discrete-time, on some specific algorithms with relative-entropy regularization.

Canonical example: **Exponentiated Gradient (EG)** 

• *R* is negative entropy,  $q(u) = u \odot u$ 

• Analyzed in discrete online settings in [2]

**Open question by [1,2]**: can we extend this reparameterization approach to general online convex optimization, in the discrete-time setting?

### Our Result

We show that in the **discrete-time** setting, online gradient descent applied to **non-convex** functions is an **approximation** of online mirror descent applied to convex functions under reparameterization, through a new **algorithmic equivalence** technique.

#### 2 Algorithm

#### Algorithm 1 Online Mirror Descent

1: Input: Initialization 
$$x_1 \in \mathcal{K}$$
, regularizer  $R$ .

- 2: **for** t = 1, ..., T **do**
- Predict  $x_t$ , observe  $\nabla f_t(x_t)$
- Update 4:

 $y_{t+1} = (\nabla R)^{-1} (\nabla R(x_t))^{-1} (\nabla R(x_$  $x_{t+1} = \Pi^R_{\mathcal{K}}(y_{t+1})$ 

5: **end for** 

#### Algorithm 2 Online Gradient Descent

1: Input: Initialization 
$$u_1 \in \mathcal{K}' = q^{-1}$$
  
2: **for**  $t = 1, ..., T$  **do**  
3: Predict  $u_t$ , observe  $\nabla \tilde{f}_t(u_t) = \nabla$ .

- Update 4:
- $v_{t+1} = u_t \eta \nabla \tilde{f}_t(u_t)$  $u_{t+1} = \Pi_{\mathcal{K}'}(v_{t+1})$

5: **end for** 

#### Main Theorem

**Theorem:** Given an instance of **convex OMD** (Alg. 1) which satisfies some assumptions on the smoothness of  $q, q^{-1}, R$ , and

 $[\nabla^2 R(x)]^{-1} = J_q(u) J_q(u)^\top$ ,

the regret of Alg. 2 is bounded by  $O(T^{2/3})$  by setting  $\eta =$  $\Theta(T^{-2/3}).$ 



$$_{t}) - \eta \nabla f_{t}(x_{t}))$$

 $(\mathcal{K}).$ 

 $\nabla f_t(q(u_t)))$ 

#### Algorithmic Equivalence Analysis

clidean in reparameterized space

ate bounded noise per trial.

#### **Reverse Direction**

The other direction from OGD to OMD is even more interesting: given a non-convex OGD, can we show its global convergence by showing the existence of a convex OMD which corresponds to OGD **implicitly**?

#### A necessary condition:

- $f_t(q(u))$  where  $f_t$  is convex.
- $q(\mathcal{K}')$  is convex and compact.

**Theorem:** running Algorithm 2 on loss  $f_t(u)$  has regret upper bound  $\tilde{O}(T^{\frac{2}{3}})$ .

#### Open Problem

Can this technique get optimal  $O(\sqrt{T})$  regret bounds? Closeness of MD and GD are not close enough by existing analysis because of **projection**. Tighter analysis may be possible.

#### References

- scent as gradient descent Neurips 2020
- descent COLT 2020

## PRINCETON UNIVERSITY Google Al

• MD Bregman divergence approximately equivalent to **Eu**-

 $D_R(x||y) \approx \frac{1}{2} \|q^{-1}(x) - q^{-1}(y)\|_2^2$ 

• The OMD and OGD **iterates are close** after a **single step**:

 $x_t = q(u_t) \Rightarrow ||x_{t+1} - q(u_{t+1})||_2 = O(\eta^{3/2}).$ 

• View the OGD update as a **perturbed** version of OMD, and combine it with the fact that the OMD algorithm can toler-

• There exists a function q such that  $f_t(u)$  can be written as

• q is a  $C^3$ -diffeomorphism, and  $J_q(u)$  is diagonal.

Ehsan Amid and Manfred Warmuth Reparameterizing mirror de-Ehsan Amid and Manfred Warmuth Winnowing with gradient