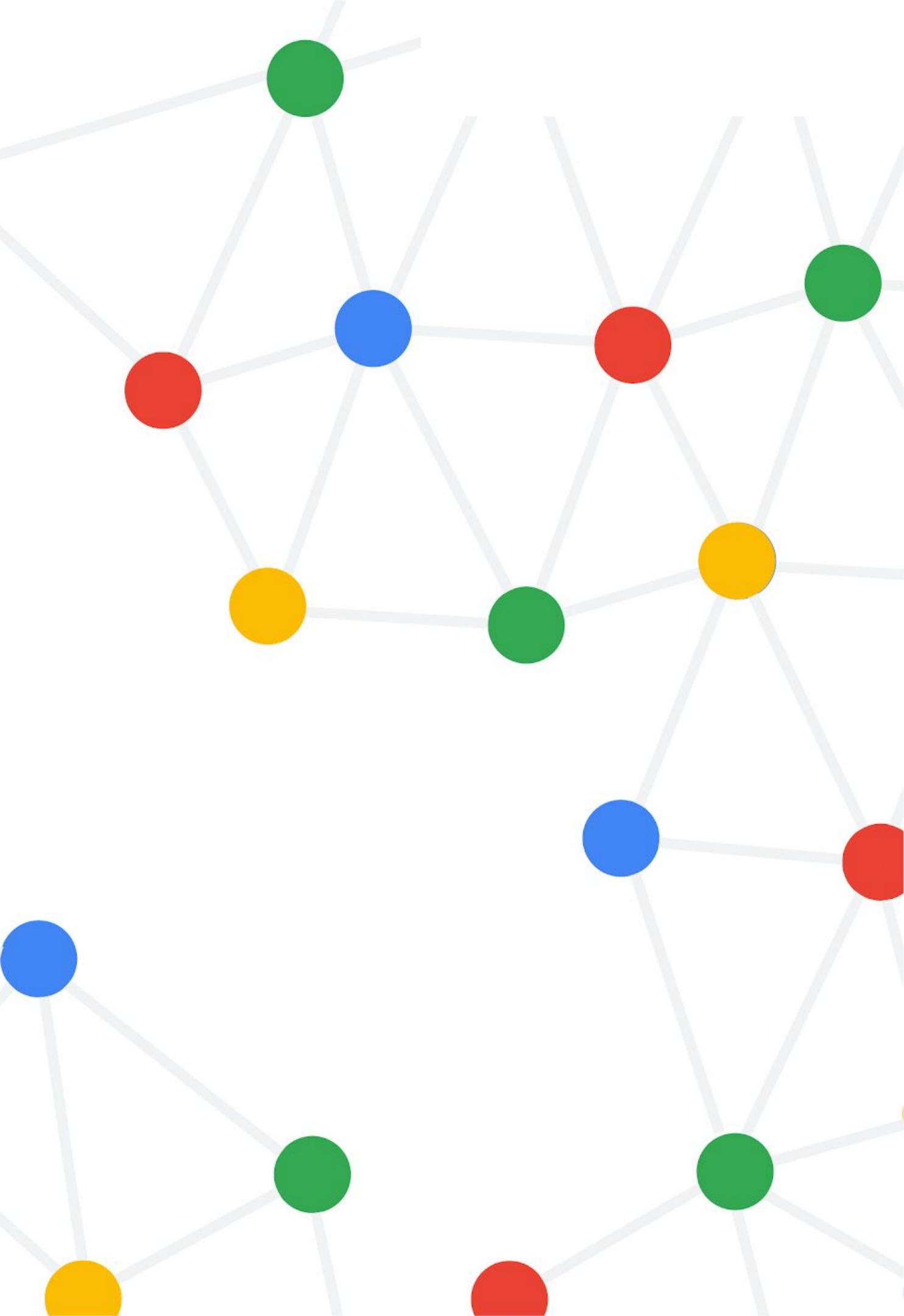
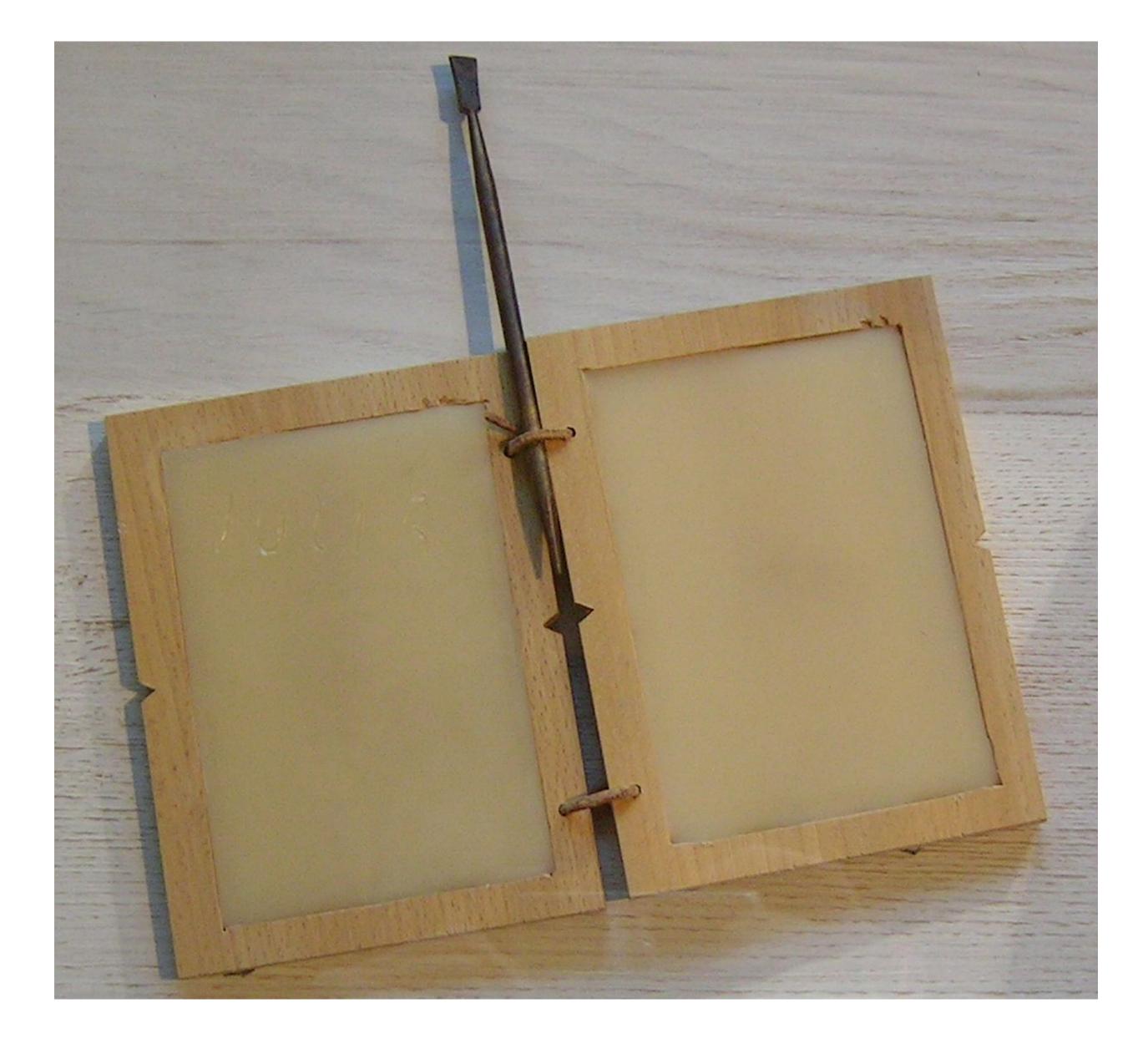
REINCARNATING RL: REUSING PRIOR COMPUTATION TO Accelerate Progress Neurips 2022

<u>agarwl.github.io/reincarnating_rl</u>

Google Research



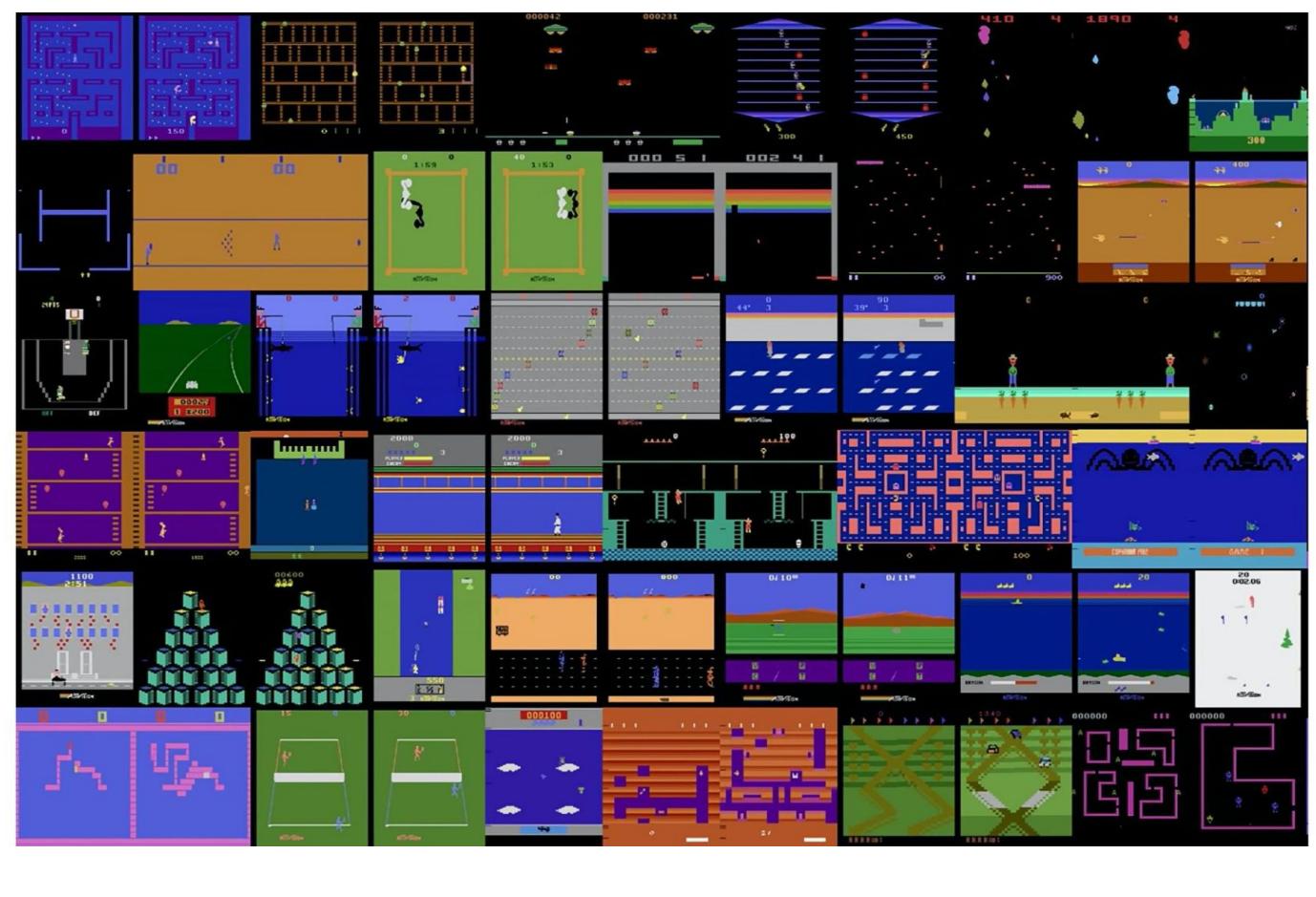


bit.ly/reincarnating rl

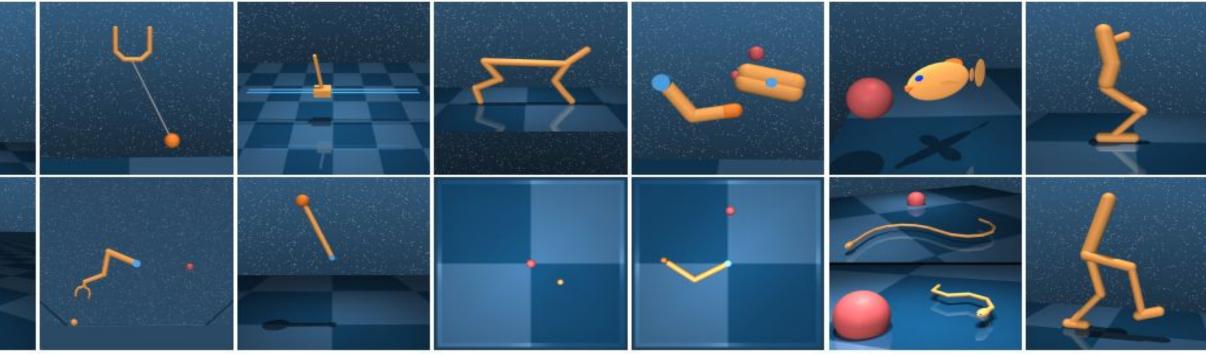
Tabula rasa Reinforcement Learning

scratch"

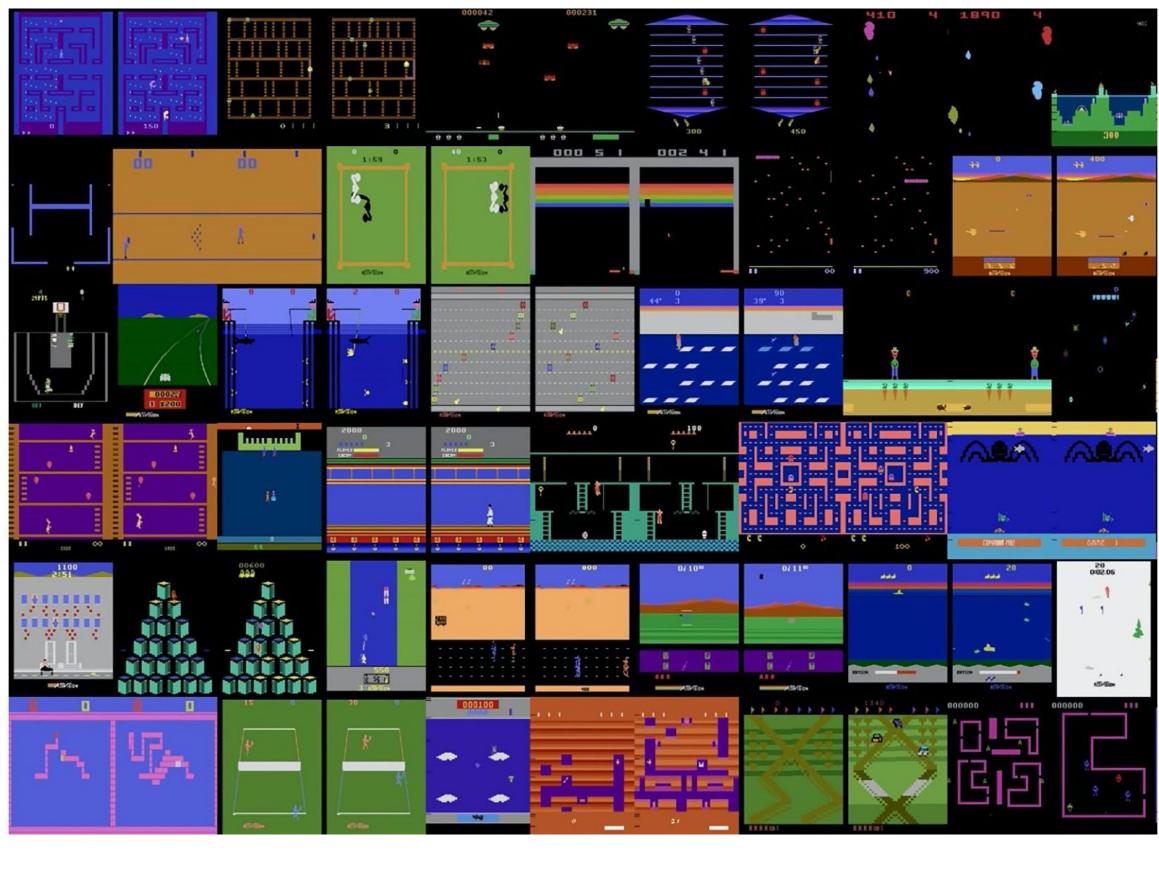
Clean or Blank state: "Learning from

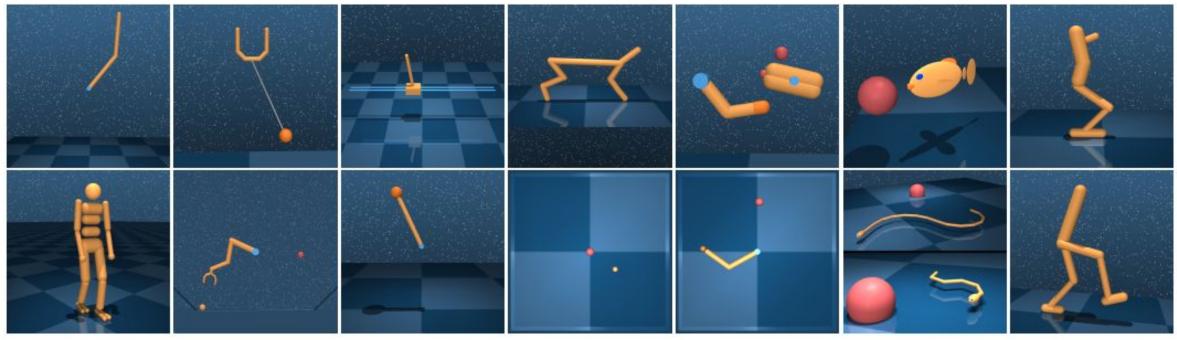


Tabula Rasa RL works for research domains.

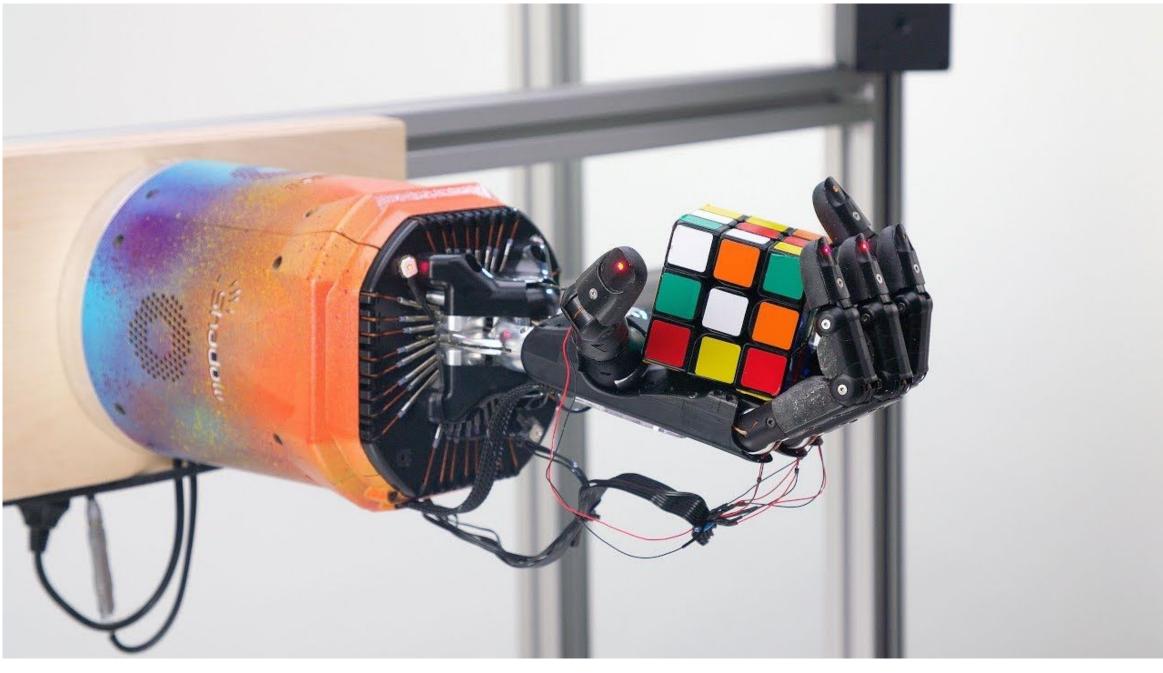


Large-scale RL problems: Tabula rasa workflow



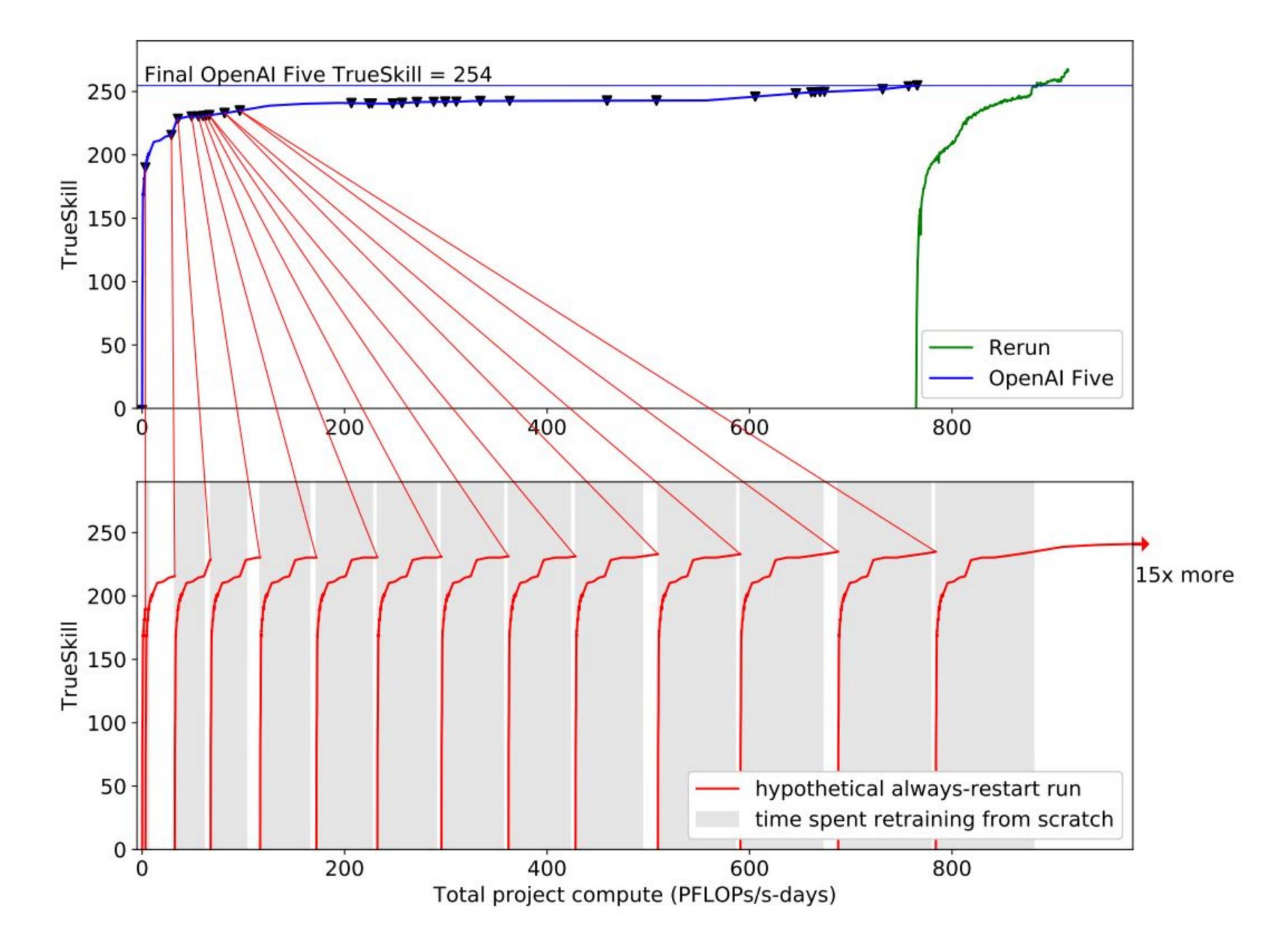


Works well here.



Not so much here.

Tabula rasa RL Playing DOTA with large-scale RL training

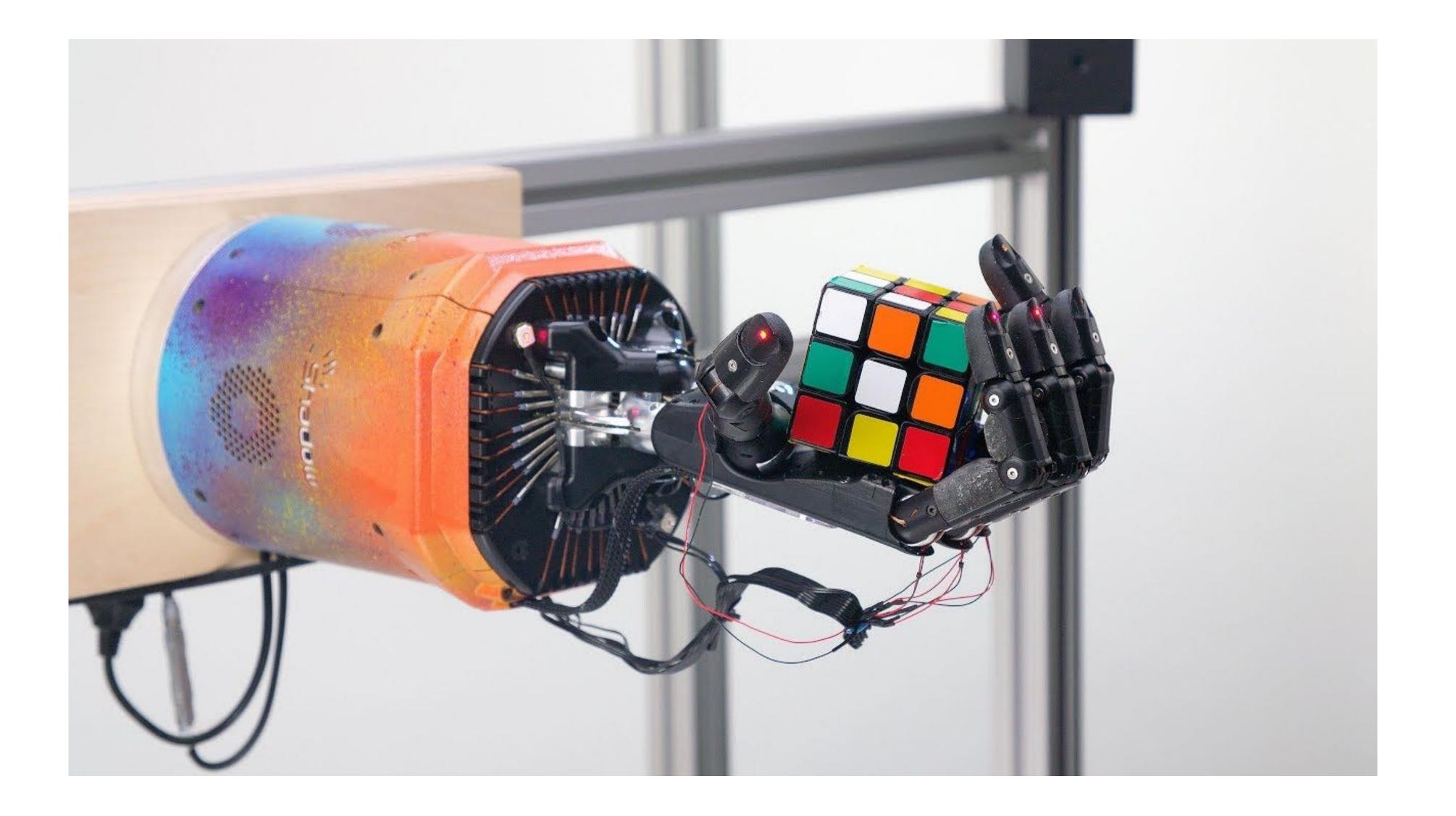


Berner, Christopher, et al. "Dota 2 with large scale deep reinforcement learning." *arXiv preprint arXiv:1912.06680* (2019).

Actual learning curve (10 months)

Restarting from scratch every time (~40 months)

Tabula rasa RL Solving Rubik's cube with a robot hand



OpenAI, et al. "Solving rubik's cube with a robot hand." *arXiv preprint arXiv:1910.07113* 10 (2019).

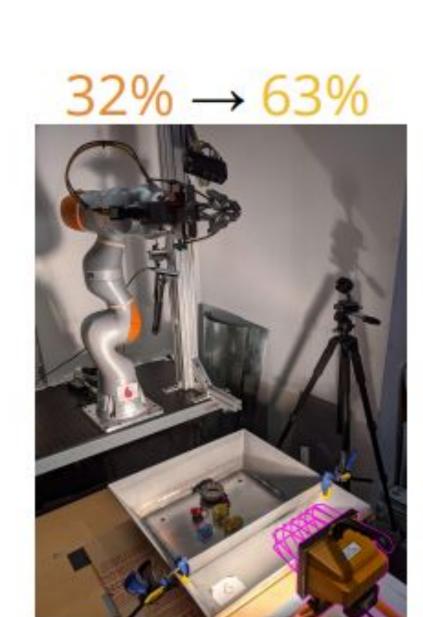
"We rarely trained experiments from scratch ..

Restarting training from an uninitialized model would have caused us to lose weeks or months of training progress."

Pre-Train



Object Grasping

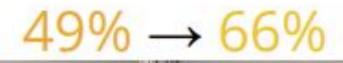


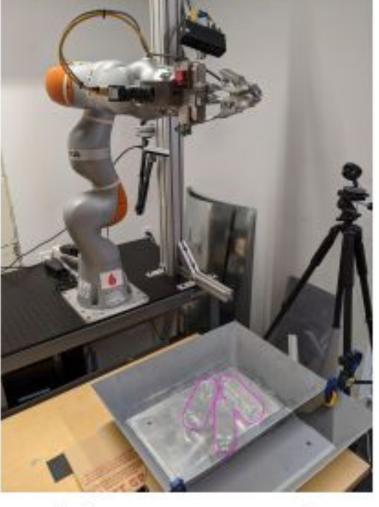
Tabula rasa RL Fine-tuning with RL

int foo(int a) {
if $(a > 100)$ {
if (bar(a) > 0) {
return 0;
} else {
}
}
return -1;
}
int bar(int a) {
if $(baz(a) < 0)$ re
• • •
}

Fine-Tune

Harsh Lighting

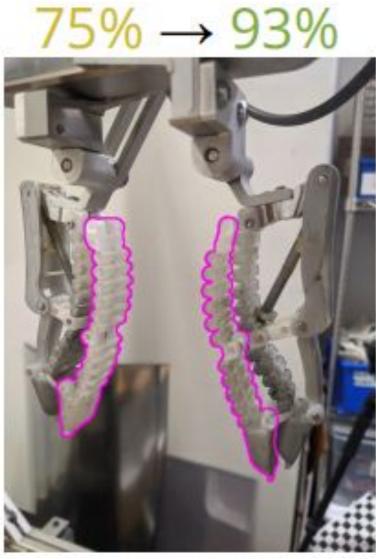


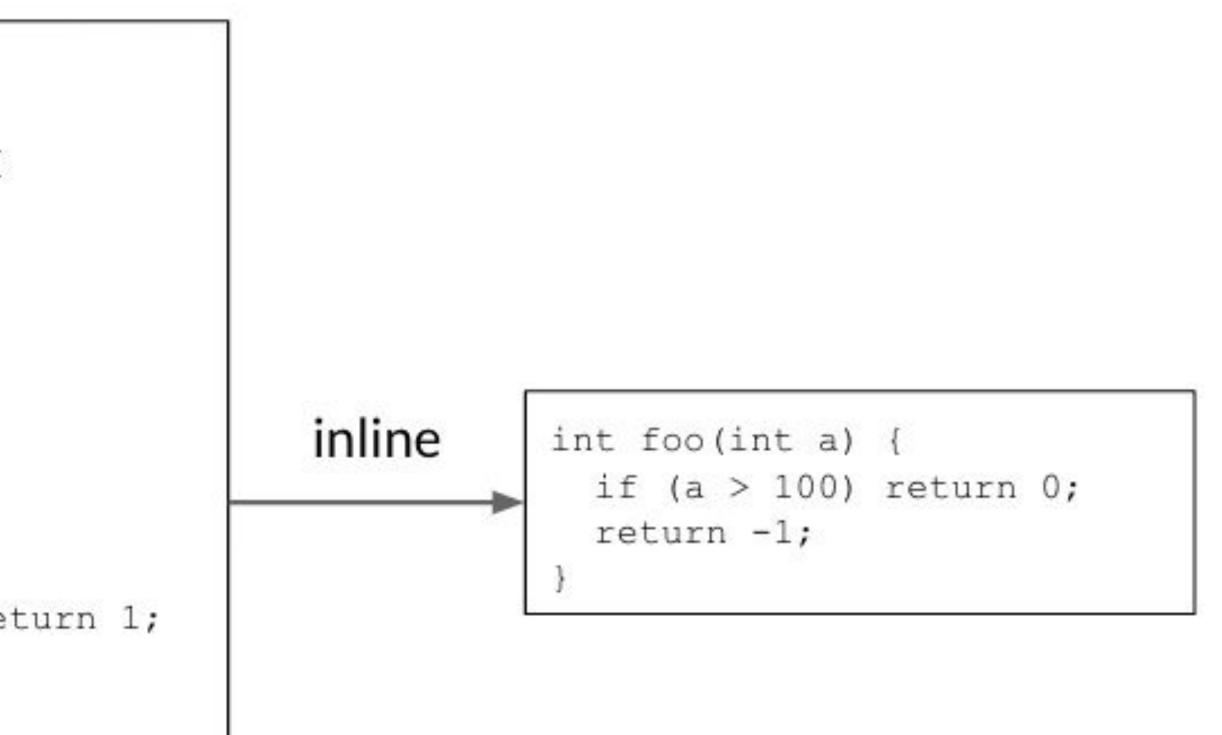


Transparent Bottles

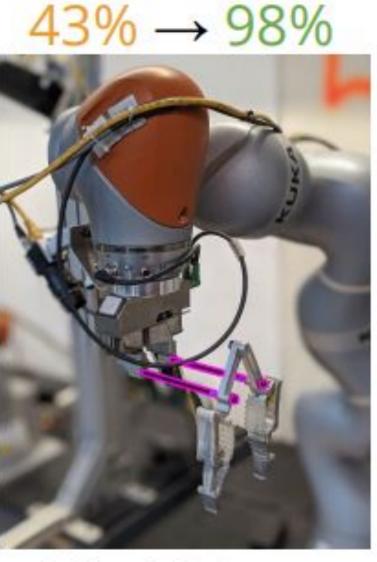
50% → 90%

Checkerboard Backing

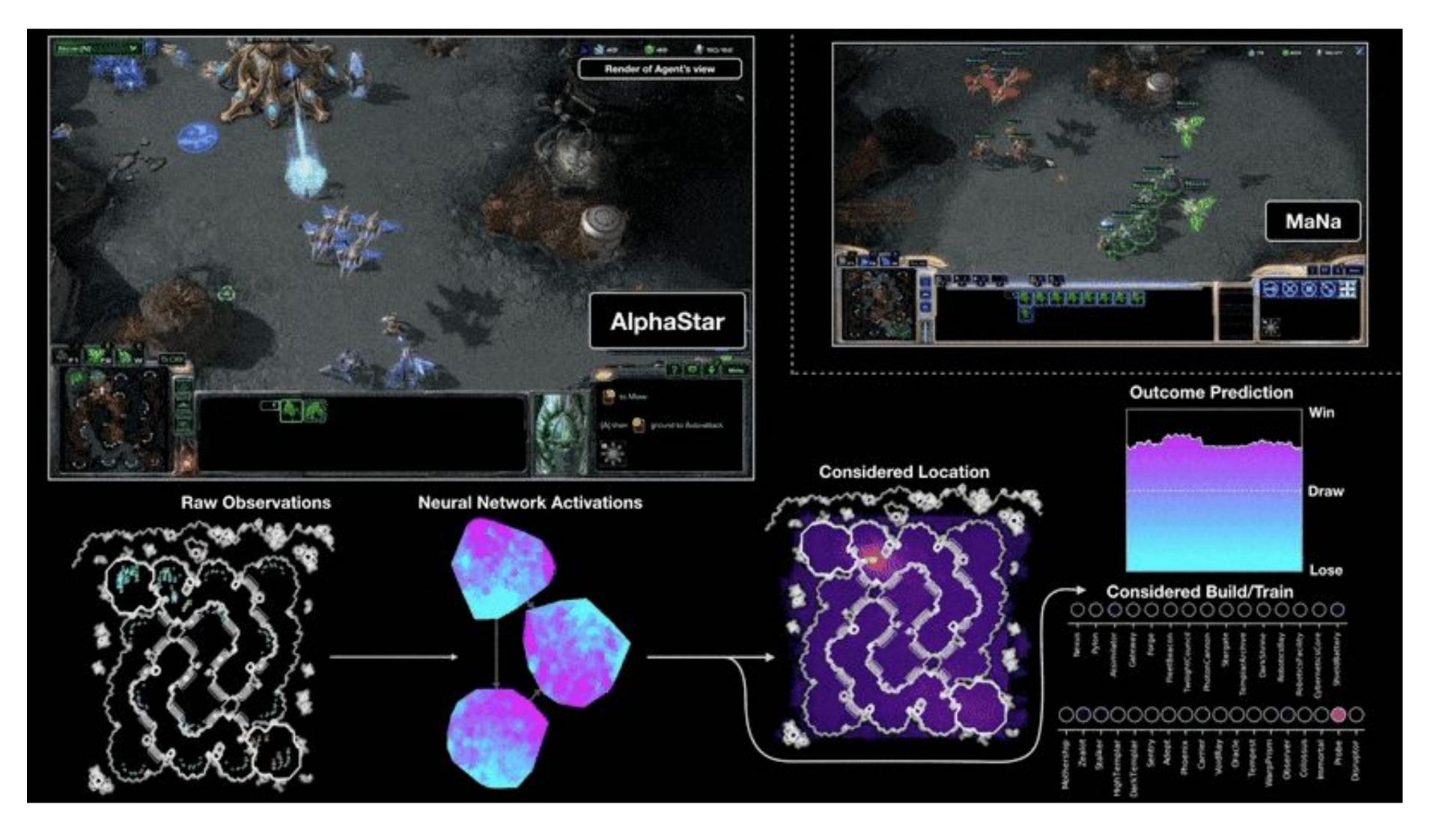




Extend Gripper 1cm



Offset Gripper 10cm

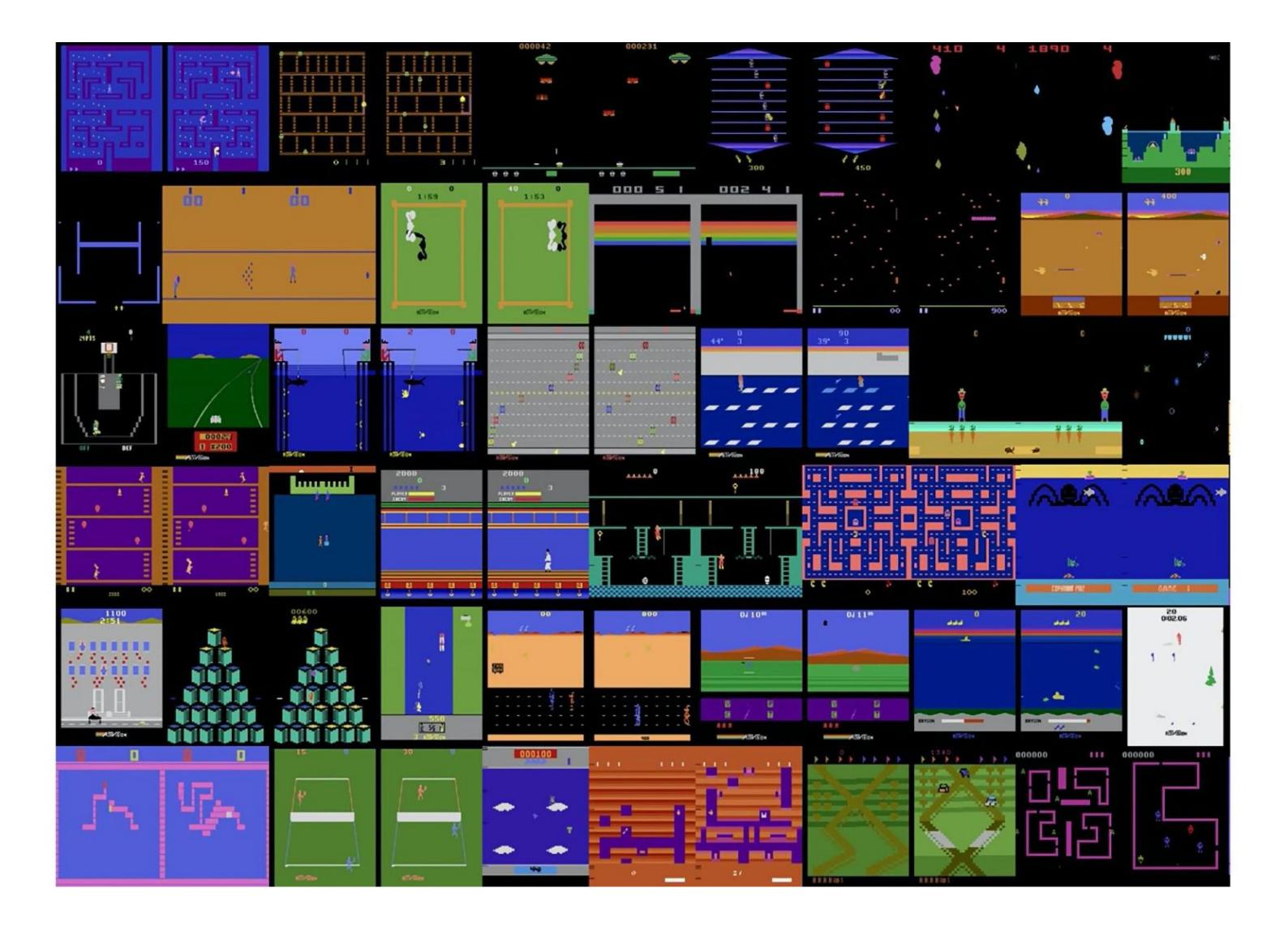


Vinyals, Oriol, et al. "Grandmaster level in StarCraft II using multi-agent reinforcement learning." *Nature* 575.7782 (2019): 350-354.

Deep RL is computationally expensive :

AlphaStar: Trained on several TPUs for a month. Replication would cost > \$1,000,000.

Excludes most researchers outside resource-rich labs.



Deep RL is computationally expensive :

Training 5 runs on 50+ Atari games for 200M frames (standard protocol) requires at least 1000+ GPU days.

Excludes most researchers outside resource-rich labs.

WHAT IF WE DIDN'T ALWAYS TRAIN KL AGENTS FROM SCRATCH FOR RESEARCH?

"Prior computational work, such as learned network weights and policies, should be maximally leveraged."

Let's say you trained an agent A₁ for a long time (e.g., days/weeks)

Experiment with better algorithms / architectures

Training another agent from scratch

(Tabula Rasa)

Let's say you trained an agent A₁ for a long time (e.g., days/weeks)

Experiment with better algorithms / architectures

Training another agent from scratch

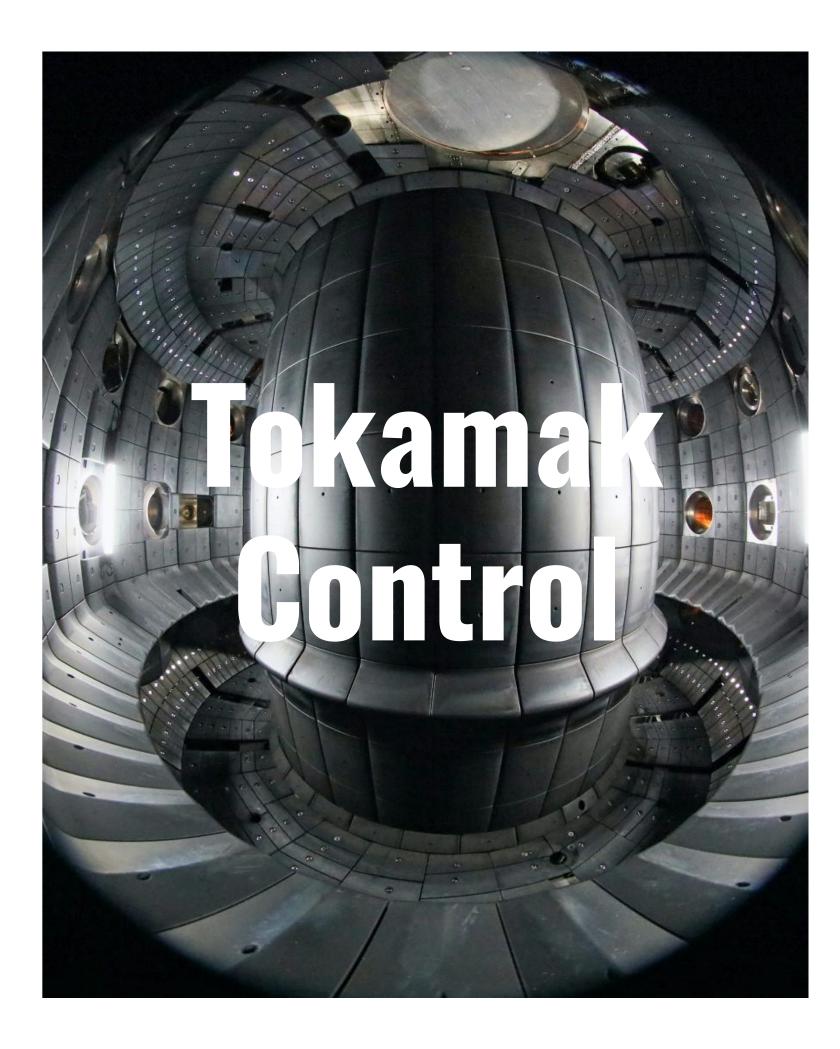
(Tabula Rasa)

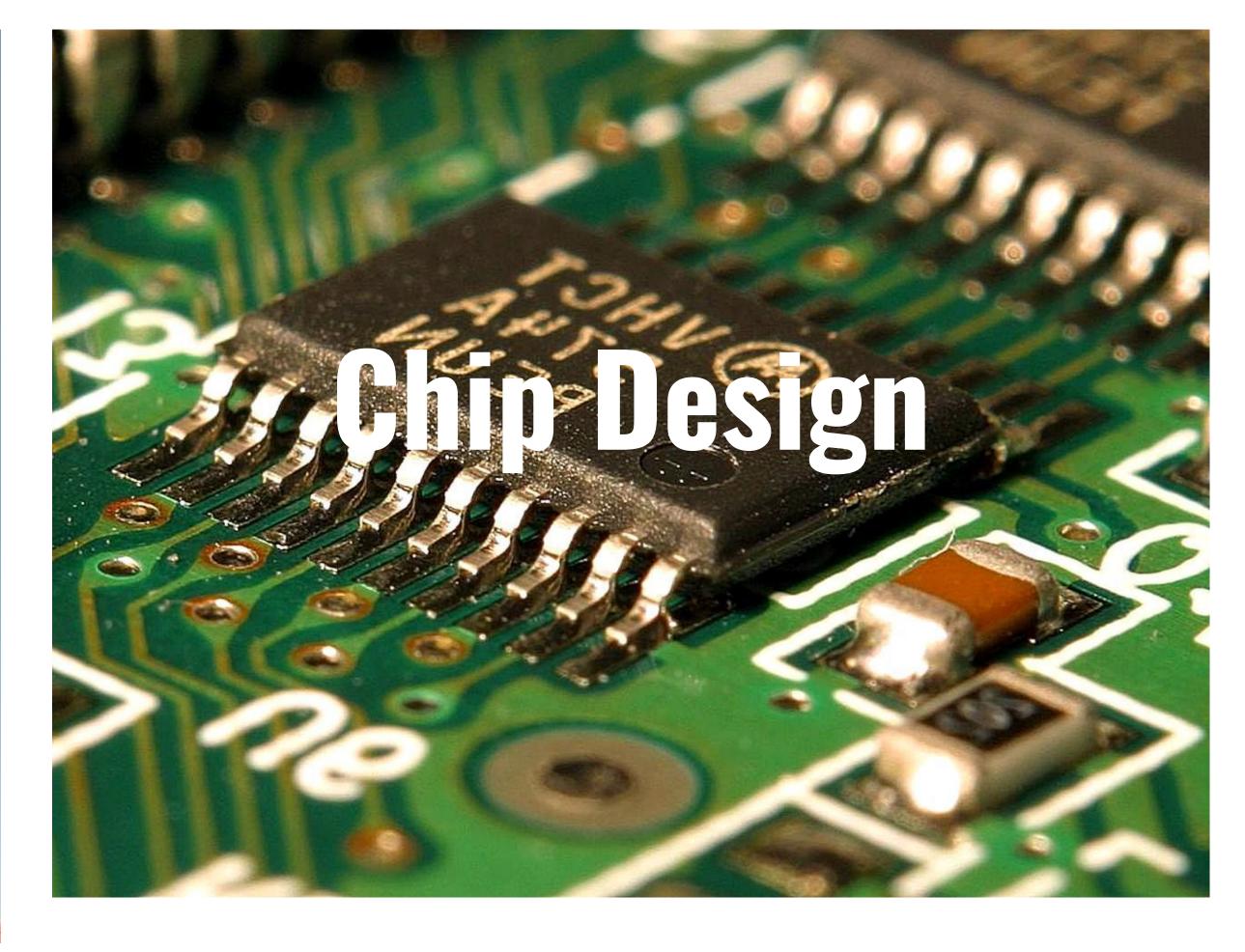
Fine-tuning A₁

Transferring A₁ to another agent and training that agent further

• More compute and sample-efficient

More compute and sample-efficient Tackle challenging problems without excessive computational resources Allows for continually updating/training agents



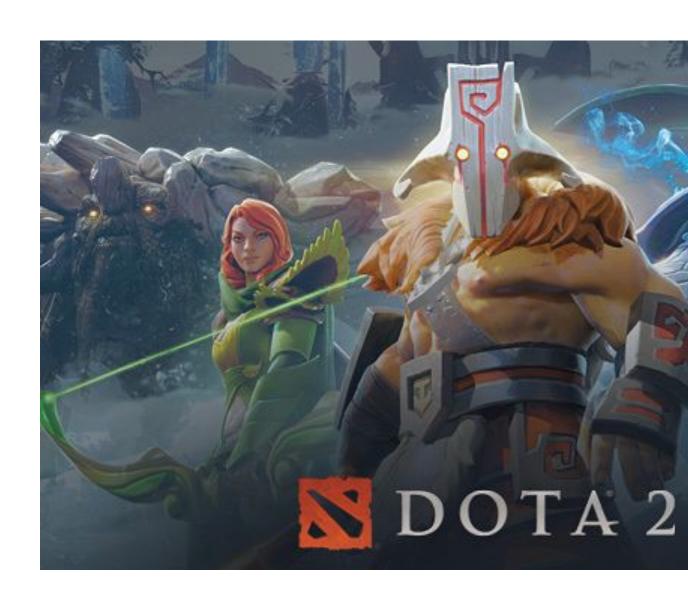


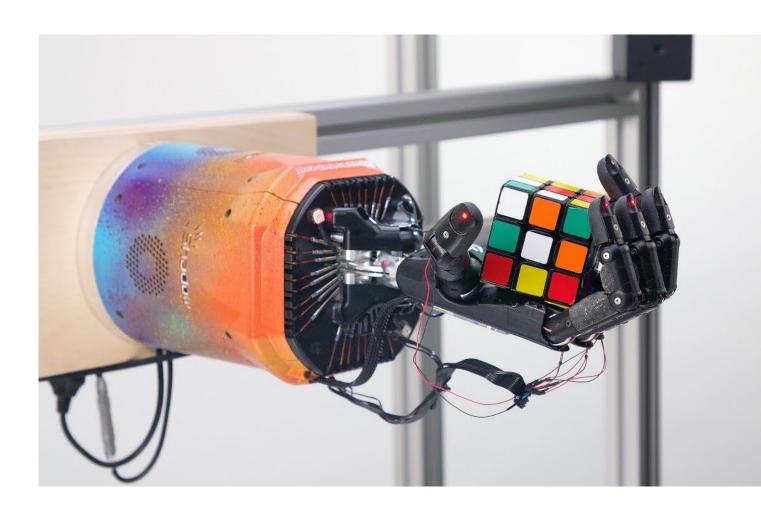
More compute and sample-efficient Tackle challenging problems without excessive computational resources Allows for continually updating/training agents • Suitable for real-world applications (prior computation is typically available)

More compute and sample-efficient Tackle challenging problems without excessive computational resources



Ad-hoc reincarnation strategies common in large-scale RL



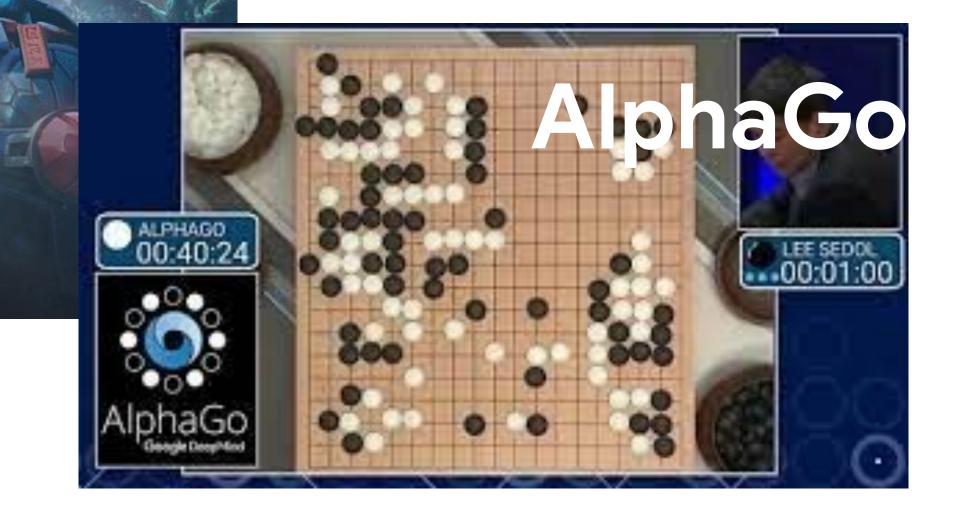


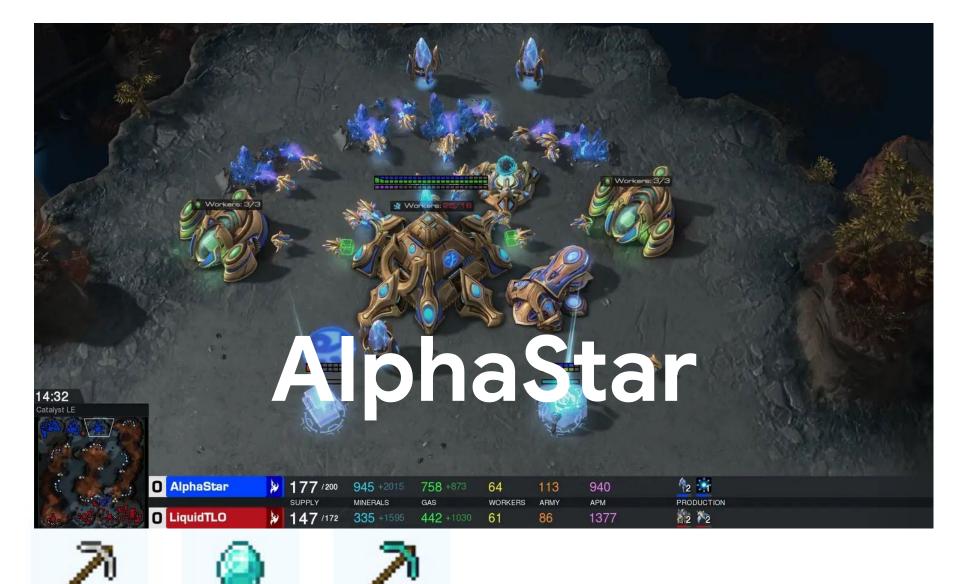
Minecraft with VPT

Achieved by foundation mode

Achieved by fine-tuning with behavioral cloning

Reincarnating RL common-rare in typical papers





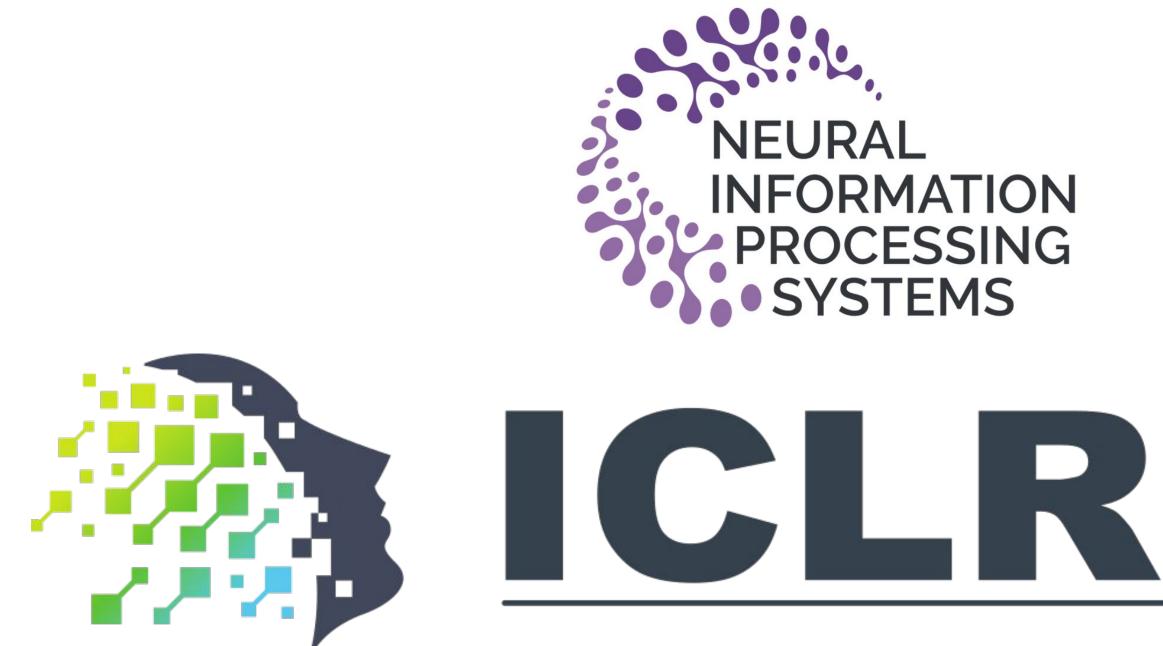
Iron Ingot 10,870 actions o minutes

11.161 actions 9.3 minutes

23,975 actions 20 minutes

Pickaxe

24,000+ action: 20+ minutes



Ad-hoc reincarnation strategies common in large-scale RL

Achieved by foundation model

Achieved by fine-tuning with behavioral cloning

Reincarnating RL common-rare in typical papers

NEURAL

LfD and so on ..

Reincarnating RL: What's different?

- Lots of related work on imitation + RL, offline RL, transfer,
 - Such papers typically don't focus on the incorporating such methods as a part of how we do RL research itself. • We still largely train Atari agents from scratch ...

Learned Policies

Reusing Prior Computation

Collected Data

Pretrained Representations

Learned Models

Others (e.g., LLMs, Skills)

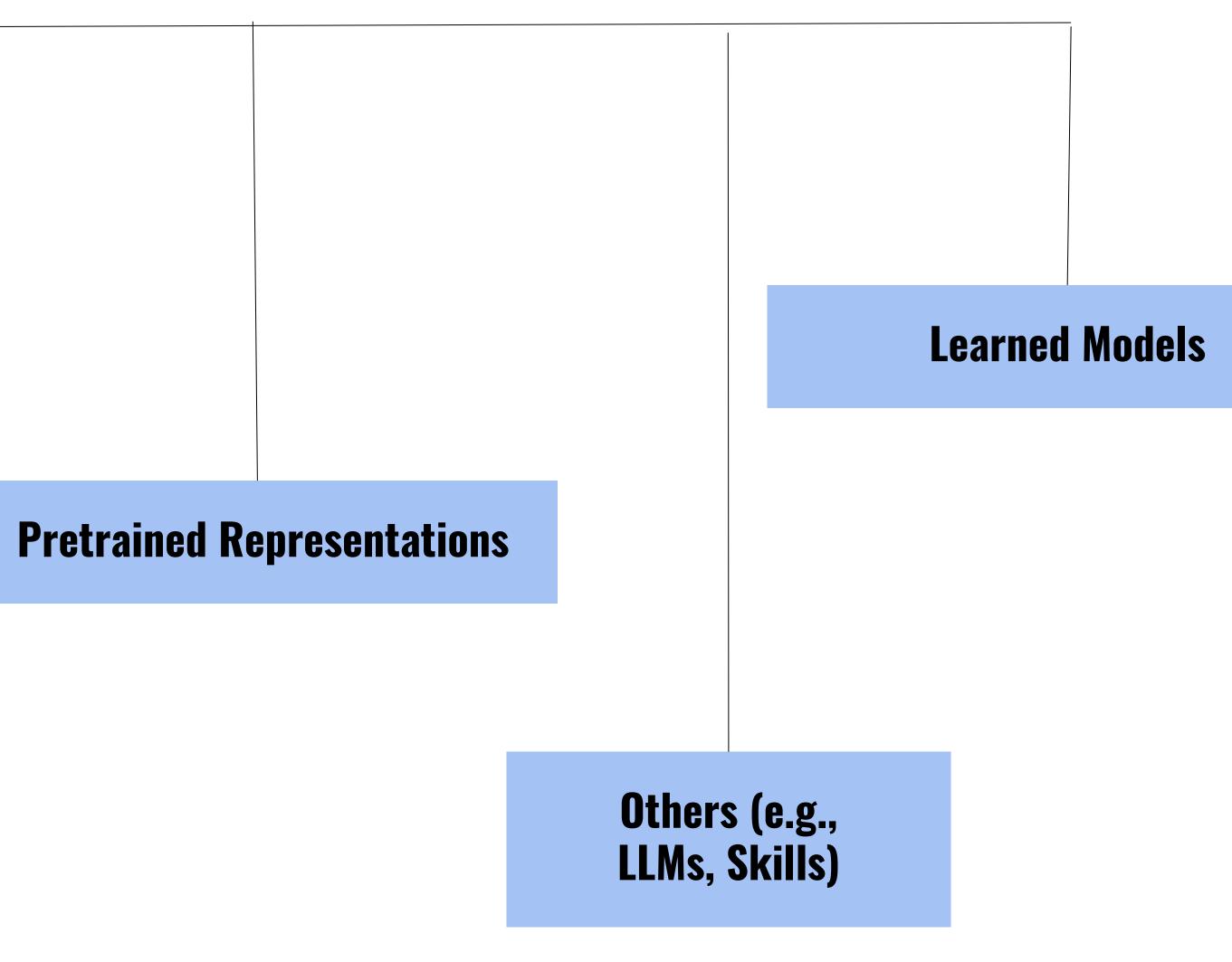
Learned Policies Policy-based Student

Value-based Student

Reusing Prior Computation

Collected Data

Model-based Student



Learned Policies

Reusing Prior Computation

Collected Data

Pretrained Representations

Learned Models

Others (e.g., LLMs, Skills)

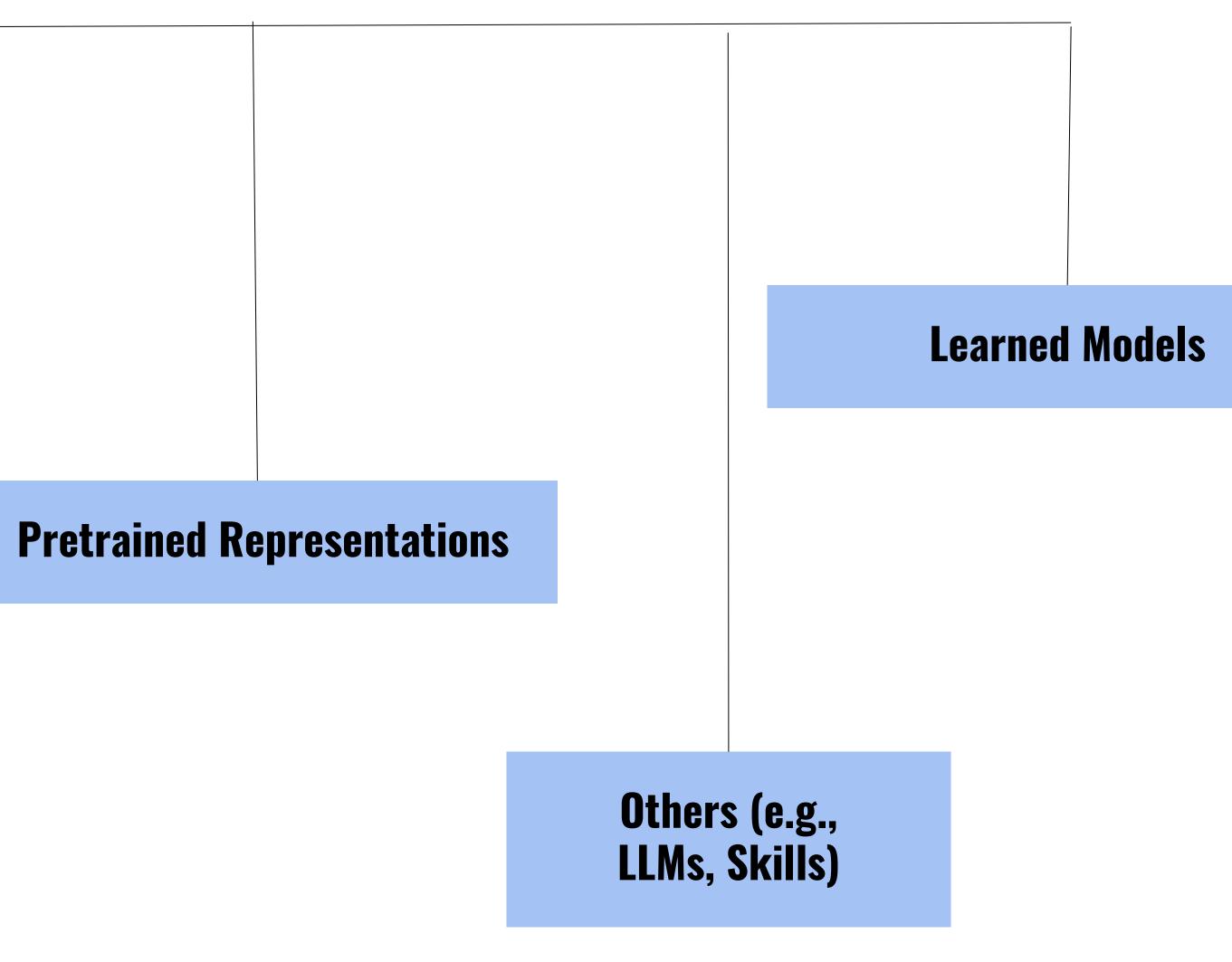
Learned Policies Policy-based Student

Value-based Student

Reusing Prior Computation

Collected Data

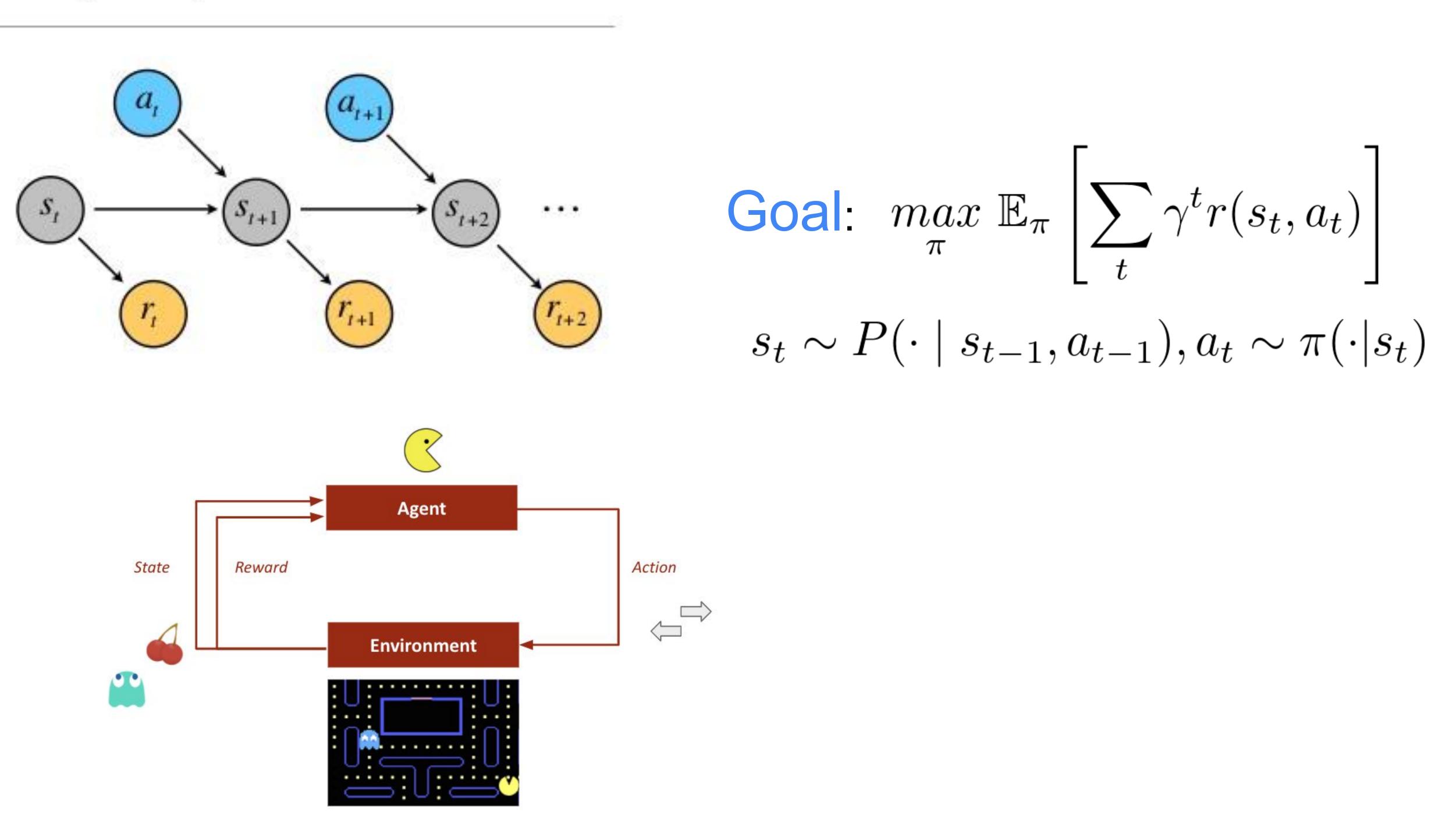
Model-based Student



Markov Decision Process (MDP)

- S Set of States
- A Set of Actions
- $Pr(s' \mid a, s)$ Transitions
- α Starting State Distribution
- Discount Factor
- r(s) Reward [or r(s,a)]

A quick primer on RL



Google Research

How good is a state-action pair?

The Q-function at state s and action a, is the expected cumulative reward from taking action a in state s and then following the policy π . Formally,

Bellman Optimality Equation $Q^*(s,a) := \max_{\pi} Q^{\pi}(s,a) = \mathbb{E}$

Solving for the optimal policy

If the function approximator is a deep neural network => Deep Q-learning!

A quick primer on RL

 $Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{t} \gamma^{t} R(s_{t},a_{t}) \mid s_{0} = s, a_{0} = a, s_{t} \sim P(\cdot|s_{t-1},a_{t-1}), a_{t}\right]$

$$\left[r(s,a) + \gamma \max_{a'} Q^*(s',a')\right]$$

Q-learning: Use a function approximator to estimate the Q-function, *i.e.* $Q(s, a; \theta) \approx Q^*(s, a)$

function parameters (weights)

$$_{t} \sim \pi(\cdot|s_{t}) \Big]$$

Case Study: Policy to Value Reincarnating RL (PVRL) $Q_{\theta}(s, a)$ $\pi_{\Phi}(a|s)$ Value-based Student Existing (e.g., DQN, SAC) suboptimal teacher policy

Transfer an existing policy to a (more) sample-efficient value-based student agent.

Policy to Value Reincarnating RL (PVRL)

$\pi_{\Phi}(a|s)$ Suboptimal Teacher

• Teacher-agnostic

Ο

Desiderata

Student shouldn't be constrained by teacher's architecture and algorithm

$Q_{\theta}(s, a)$ Value-based Student

Policy to Value Reincarnating RL (PVRL)

$\pi_{\Phi}(a|s)$ Suboptimal Teacher

Teacher-agnostic Weaning off teacher Ο

Desiderata

Undesirable to maintain teacher dependency for successive reincarnations

$Q_{\theta}(s, a)$ Value-based Student

Policy to Value Reincarnating RL (PVRL)

$\pi_{\Phi}(a|s)$ Suboptimal Teacher

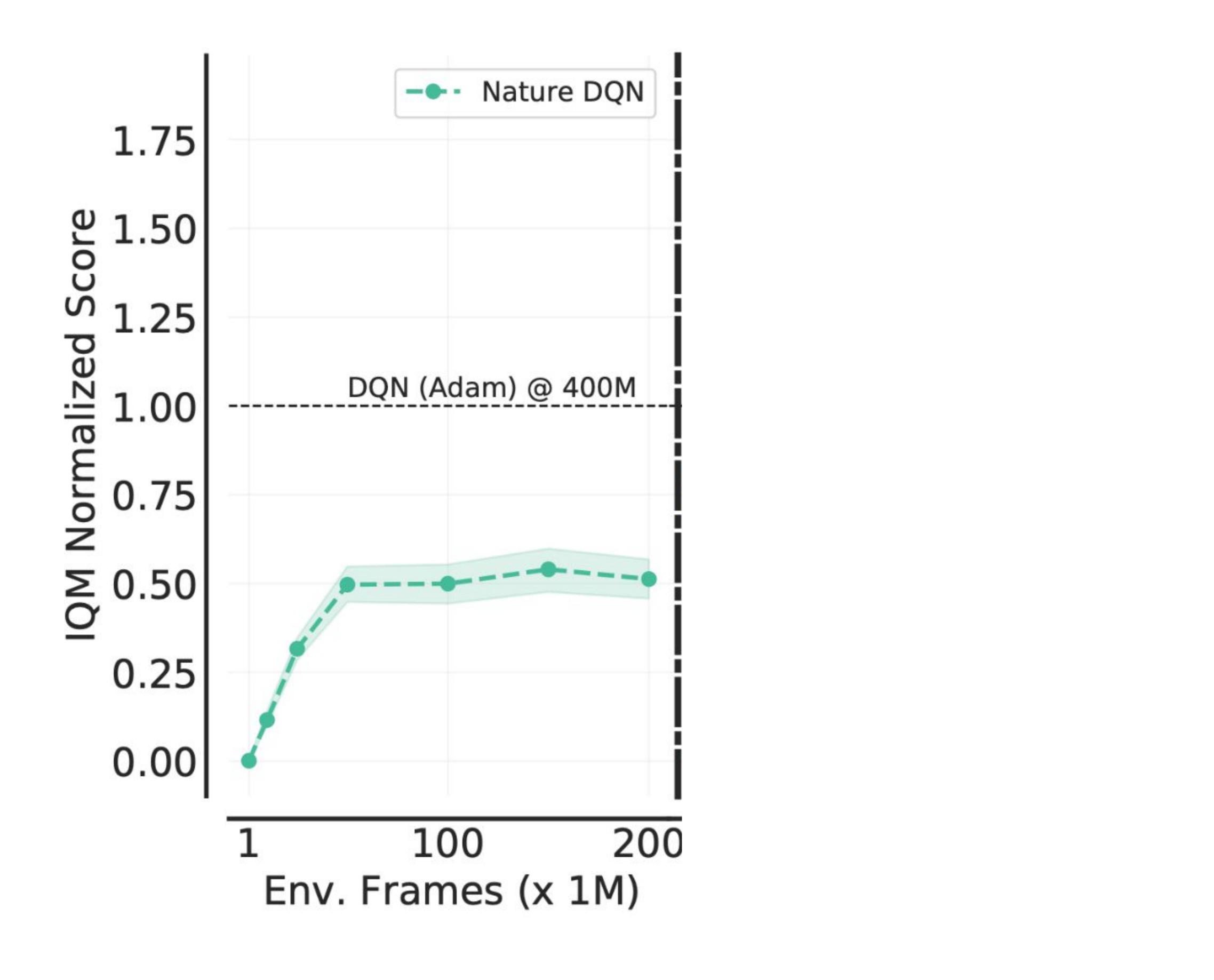
Teacher-agnostic Weaning off teacher **Compute Efficient** Ο

Desiderata

Reincarnation should be cheaper than training from scratch

$Q_{\theta}(s, a)$ Value-based Student

Reincarnating RL as a Research Workflow

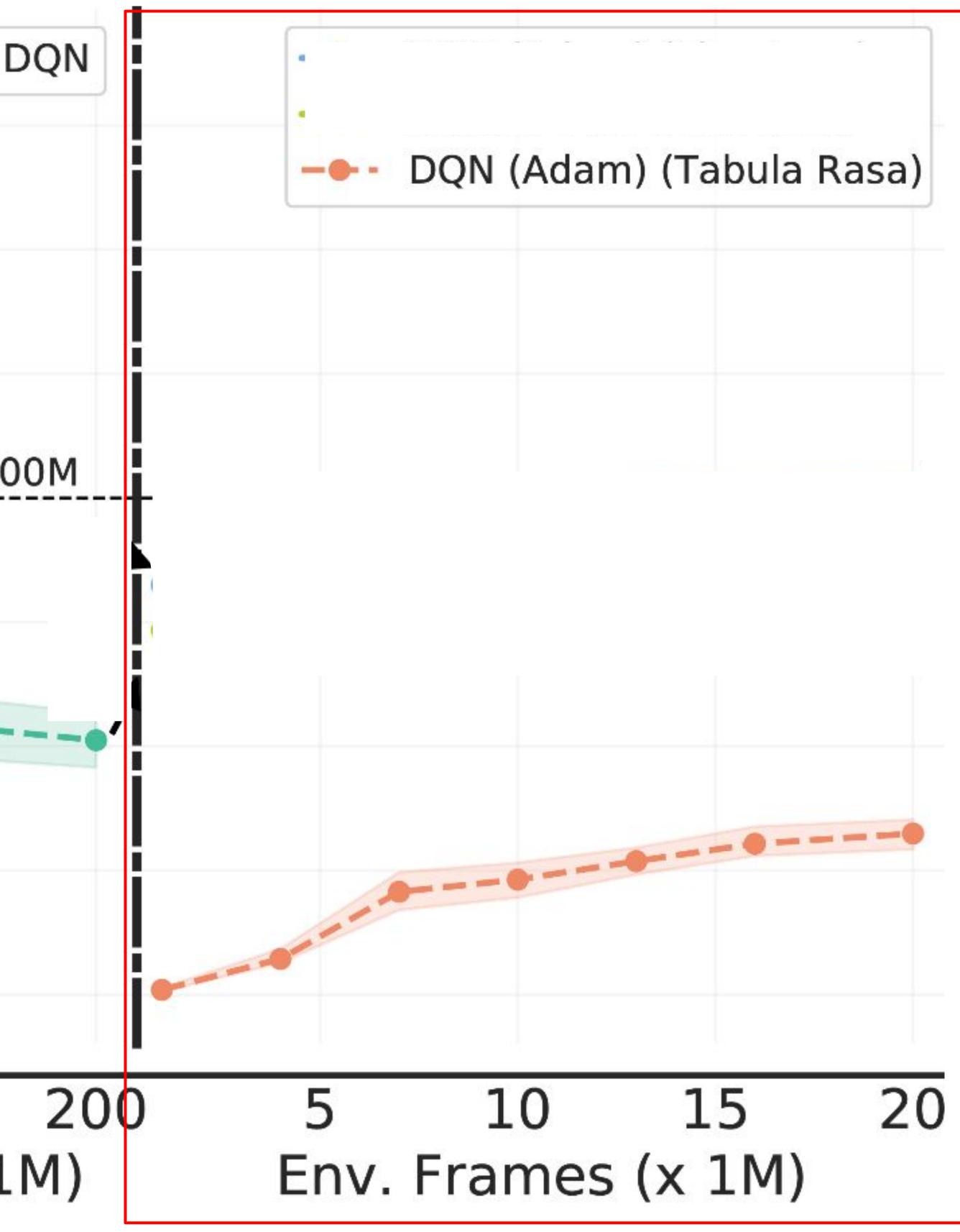


Reincarnation on ALE

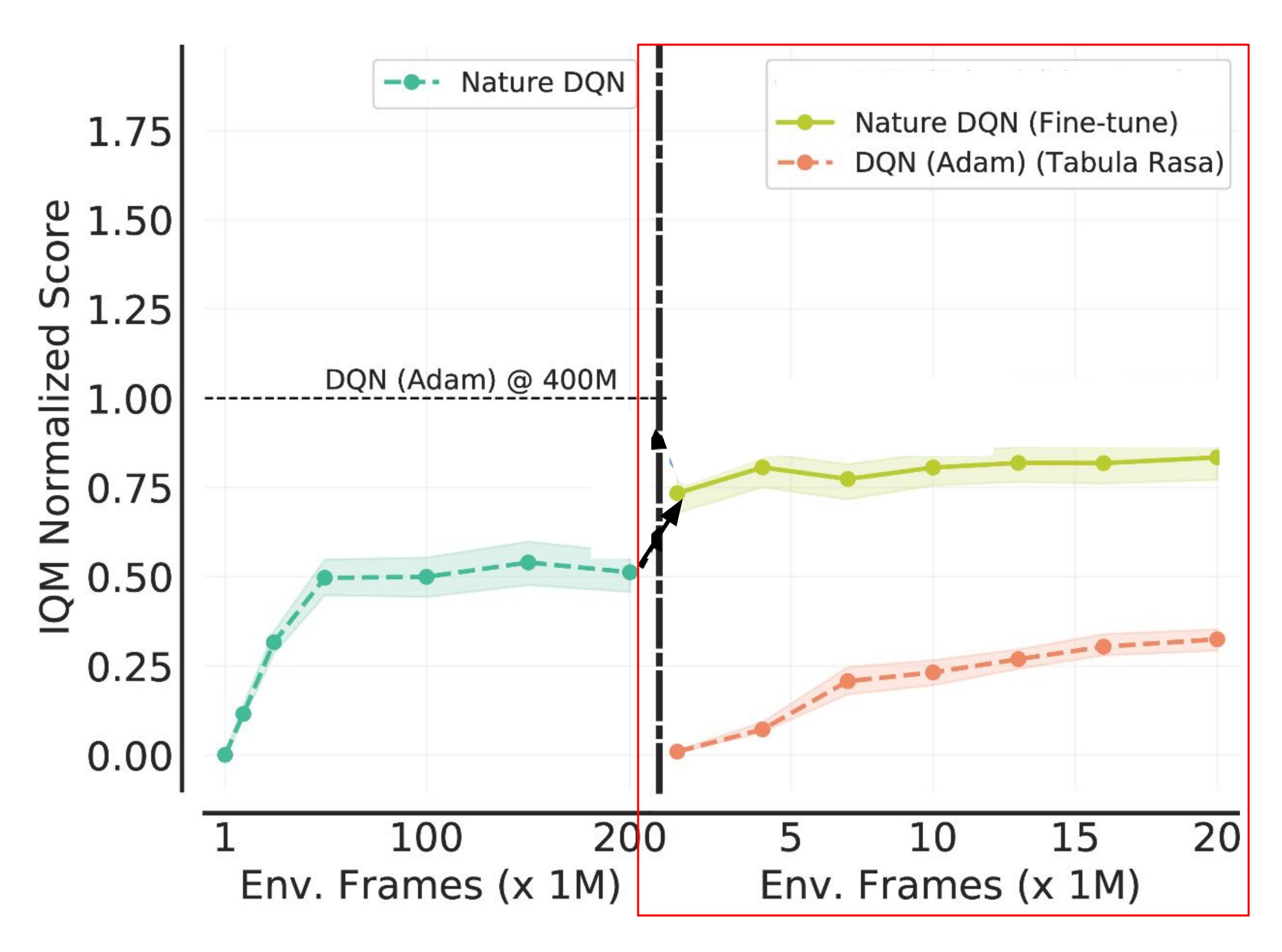
Let's assume we have access to the Nature DQN trained by Mnih et. al. (2015)

	Nature D
1.75	
1.50	
1.25	
1.00	DQN (Adam) @ 40
0.75	
0.50	
0.00	
	1 100
	Env. Frames (x 1
	1.50

Switching optimizer to Adam



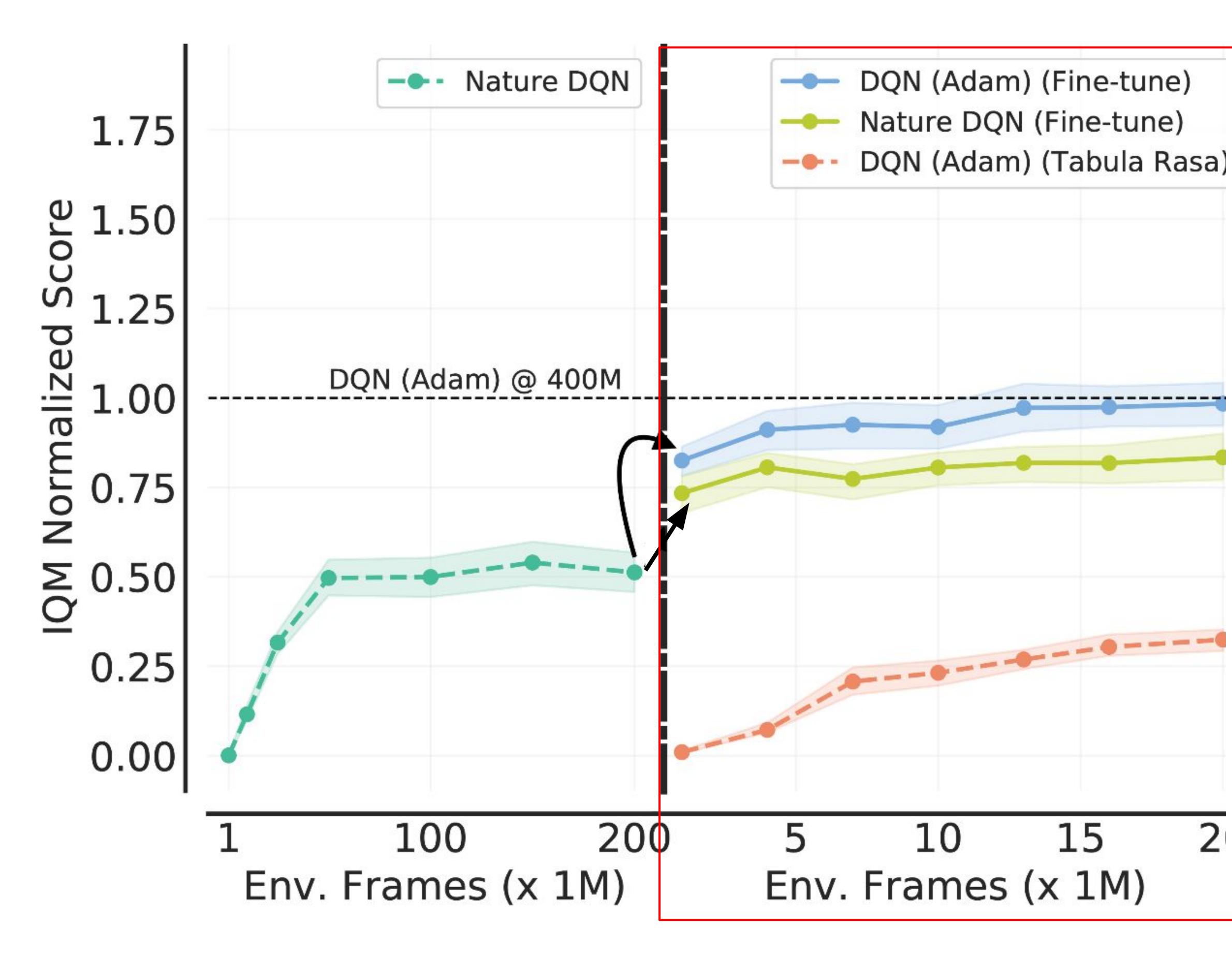
DQN (Adam) seems to be better than Nature DQN.



DQN (Adam) vs. Fine-tuning Nature DQN

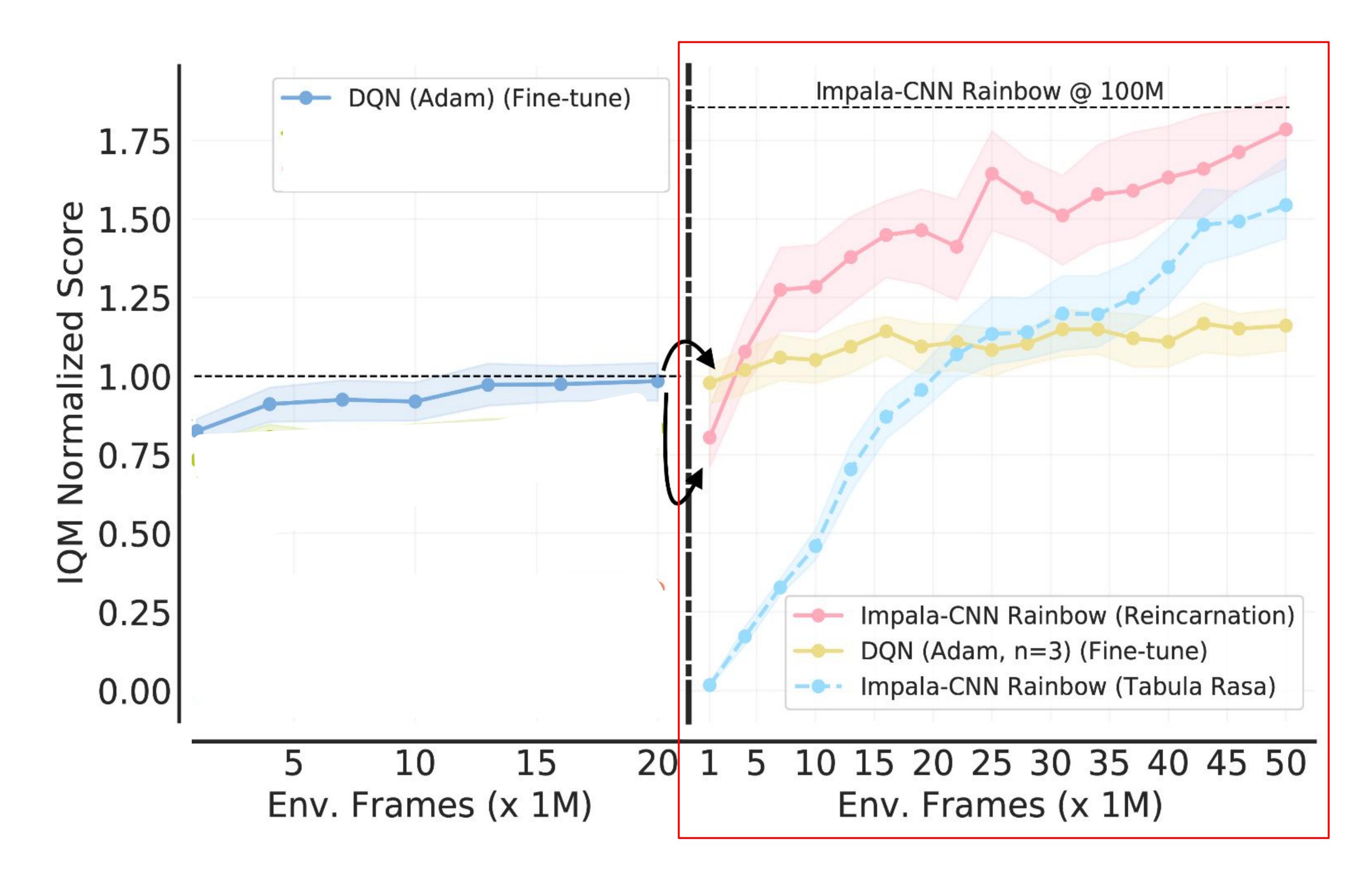
Fine-tuning DQN significantly **Improves** performance.

Reincarnating DQN (Adam) via Fine-Tuning



Similar results to DQN (Adam) trained from scratch for 400M frames in few hours of training rather than a week!

Reincarnating a Different Architecture / Algorithm



Saved 50M frames or 1 day of GPU training!

Recap: Policy to Value Reincarnating RL (PVRL)

$\pi_{\Phi}(a|s)$ Suboptimal Teacher

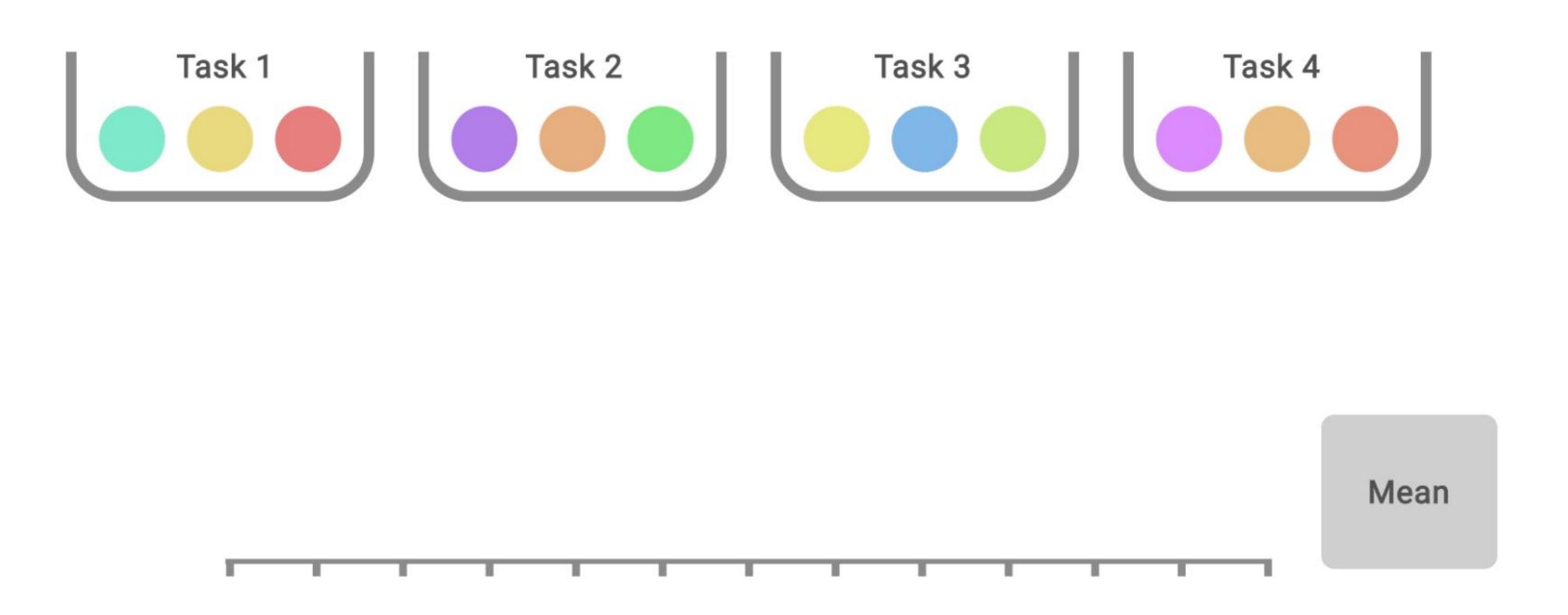
Teacher-agnostic Weaning off teacher **Compute Efficient**

Desiderata

$Q_{\theta}(s, a)$ Value-based Student

- Interactive teacher policy: DQN trained for 400M frames (7 days on a single GPU) Also assume access to replay data of the teacher Ο
- Transfer a student DQN using 10M frames (a few hours)
- 10 Atari games with sticky actions (for stochasticity)
- **Evaluation: Interquartile Mean** [1]

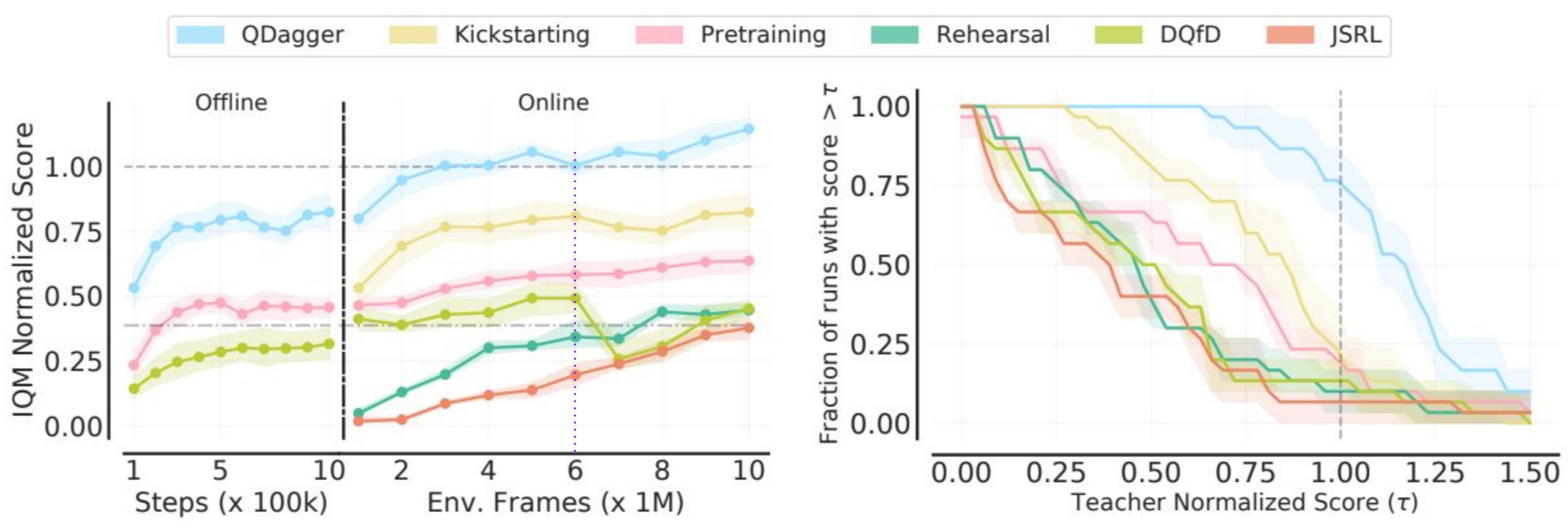
PVRL: Experimental Setup



Adapting existing approaches: **Rehearsal:** Replaying Teacher Samples • **Pretraining:** Offline RL on Teacher Data • Kickstarting: On-policy Distillation + Q-learning **DQfD:** Learning from teacher demonstrations • **JSRL**: Improving data collection using teacher

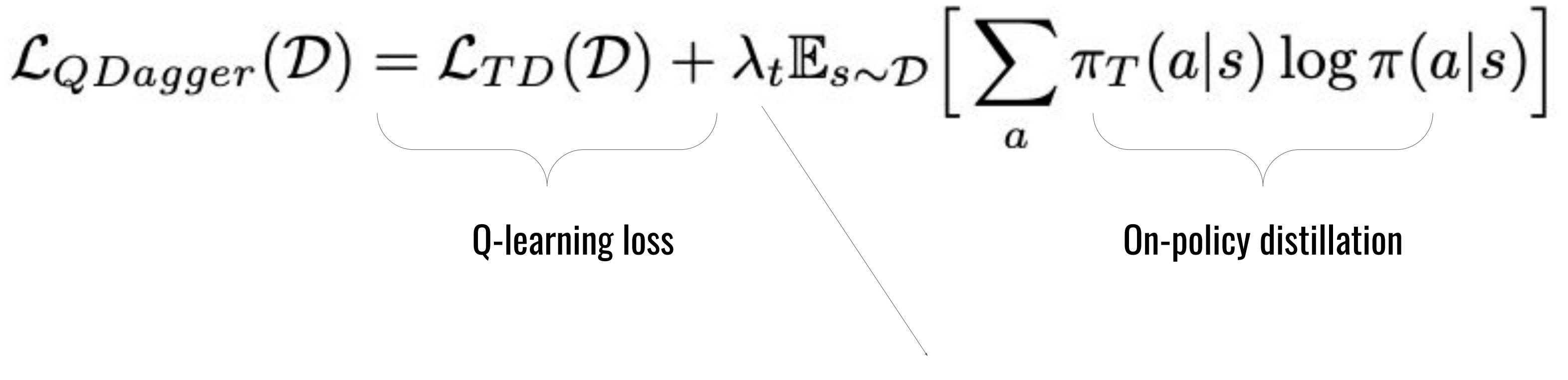
PVRL: Closely Related Methods

PVRL on ALE: DQN (Adam) @ 400M \rightarrow DQN



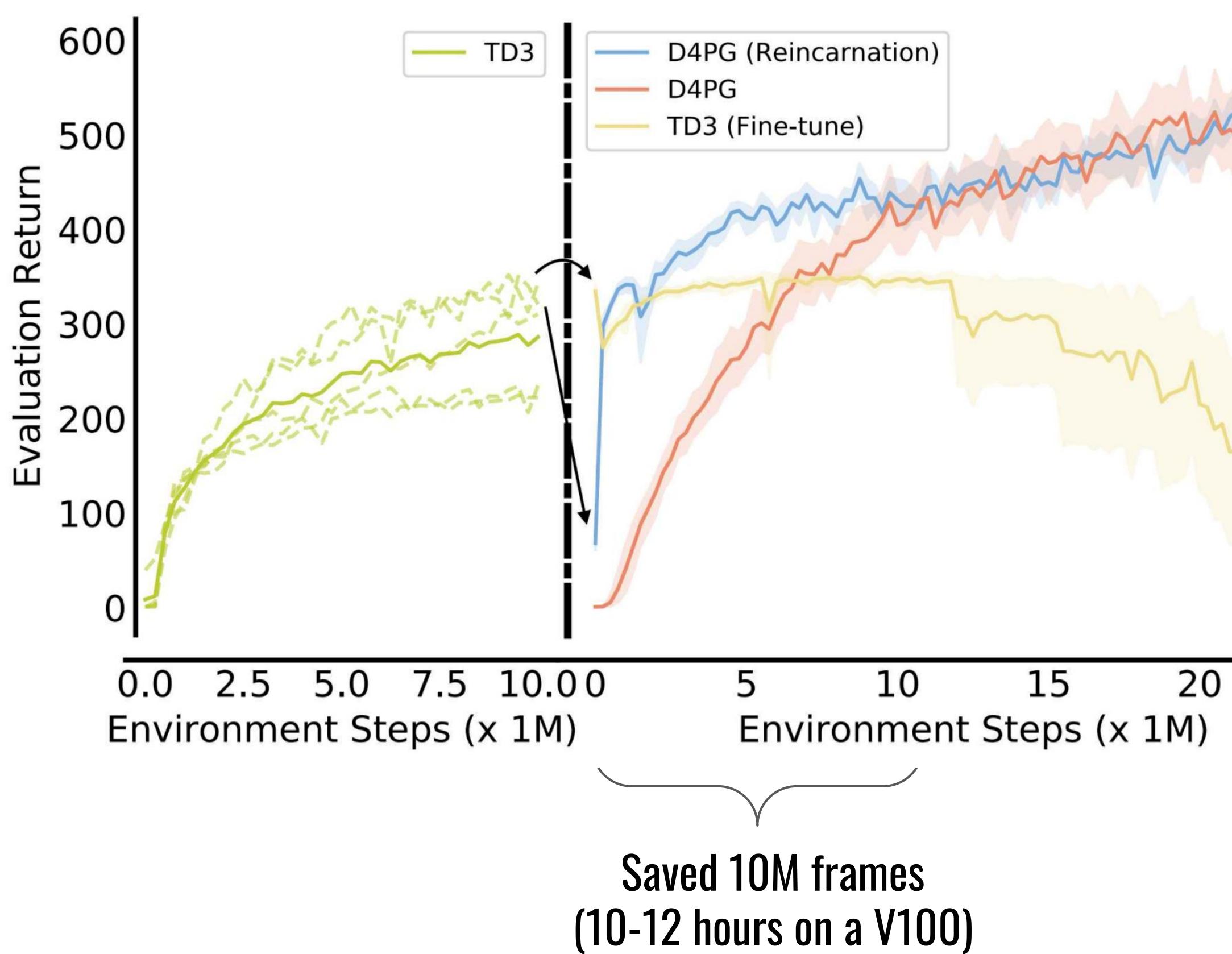
Combine Q-learning with Dagger. Phases: (Offline) Pretrain on Teacher data -(Online) Train on self-collected data.

QDagger: A simple PVRL baseline



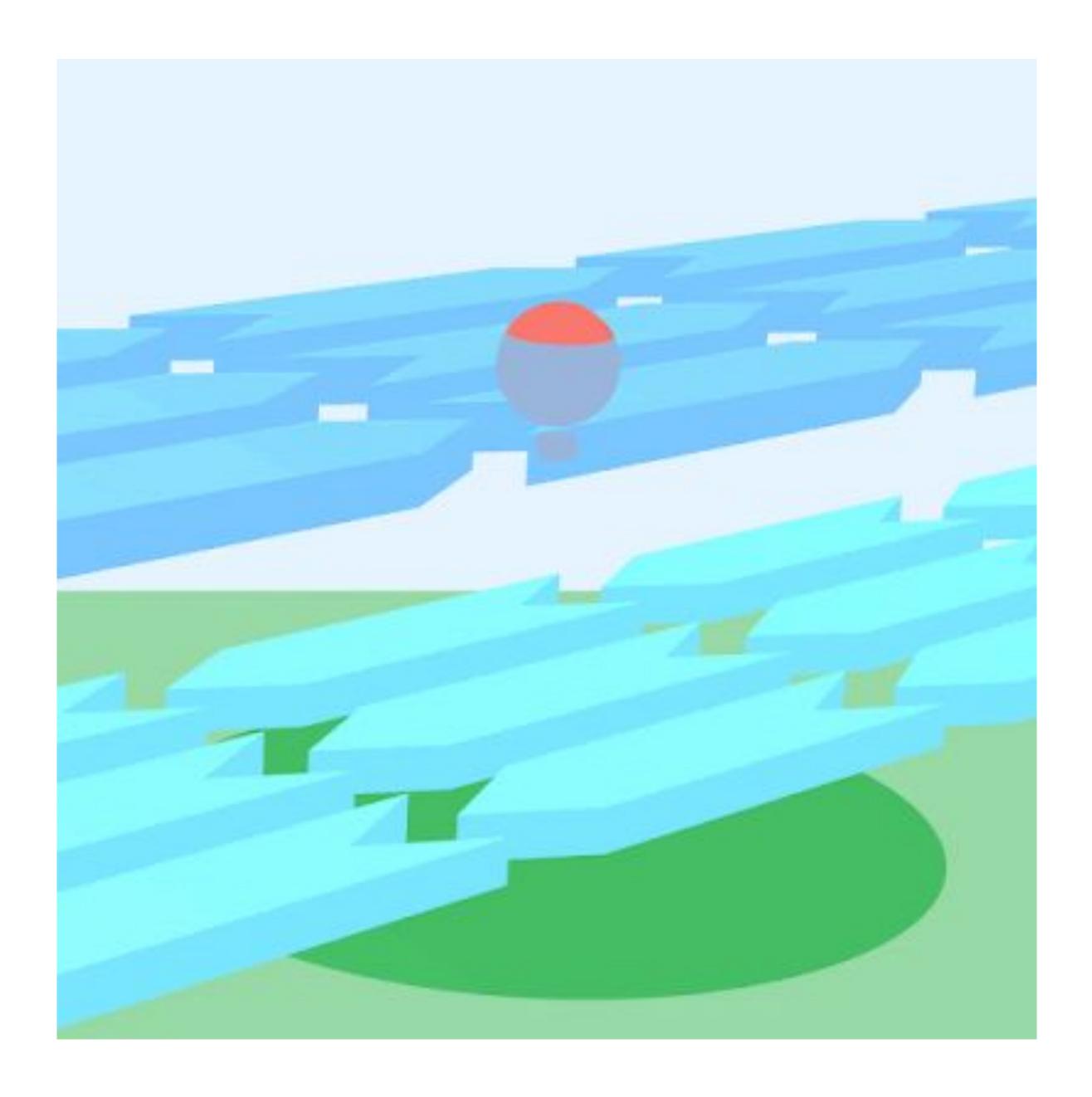
Decaying coefficient to wean off the teacher.

Reincarnation on a difficult control task: Humanoid Run



25

Reincarnation on Balloon Learning Environment (BLE)



[1] Bellemare, Marc G., et al. "Autonomous navigation of stratospheric balloons using reinforcement learning." *Nature* 588.7836 (2020): 77-82. [2] <u>The Balloon Learning Environment</u>. https://ai.googleblog.com/2022/02/the-balloon-learning-environment.html

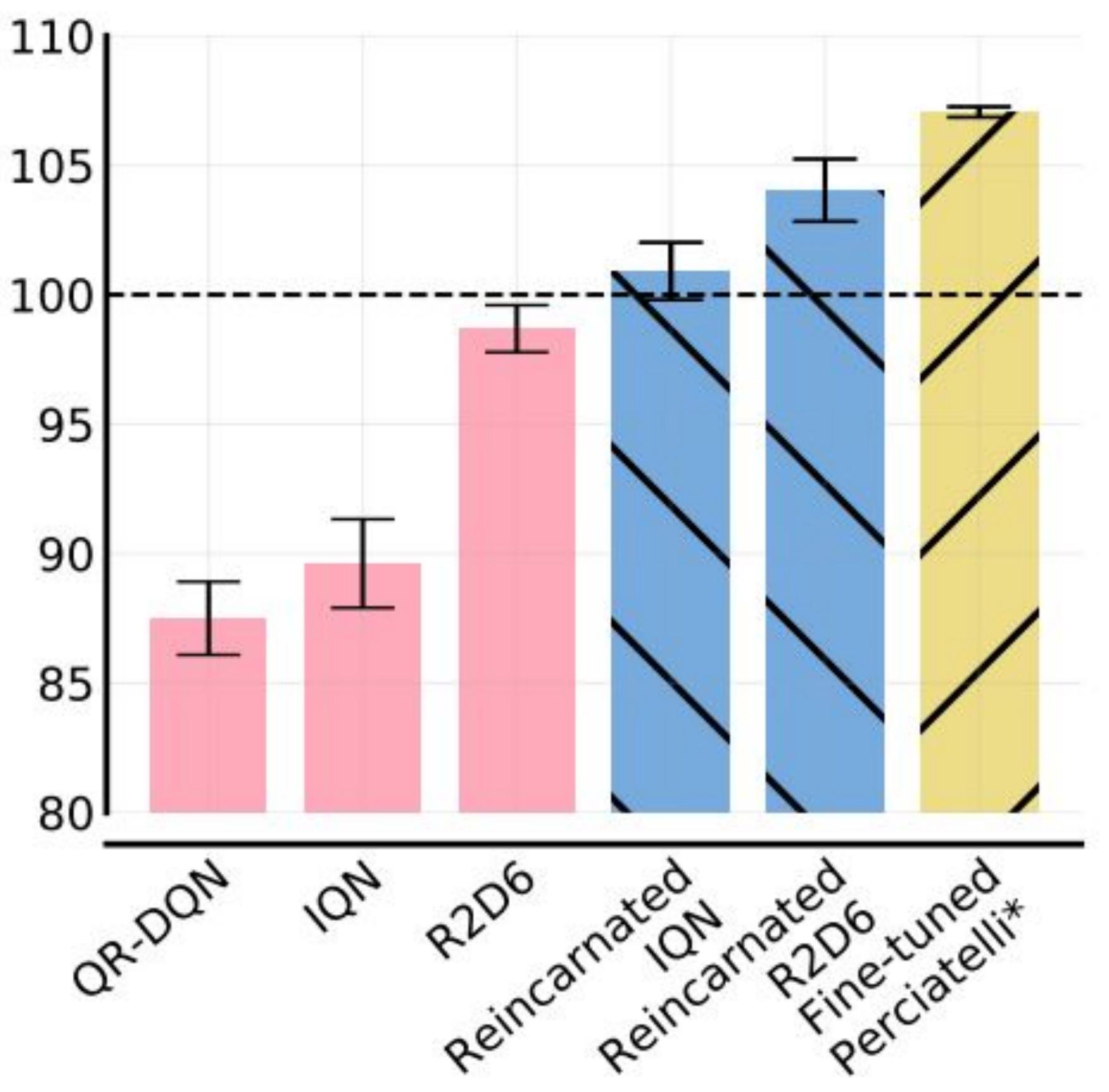
can be made?

Access to the existing agent trained for a month with distributed RL.

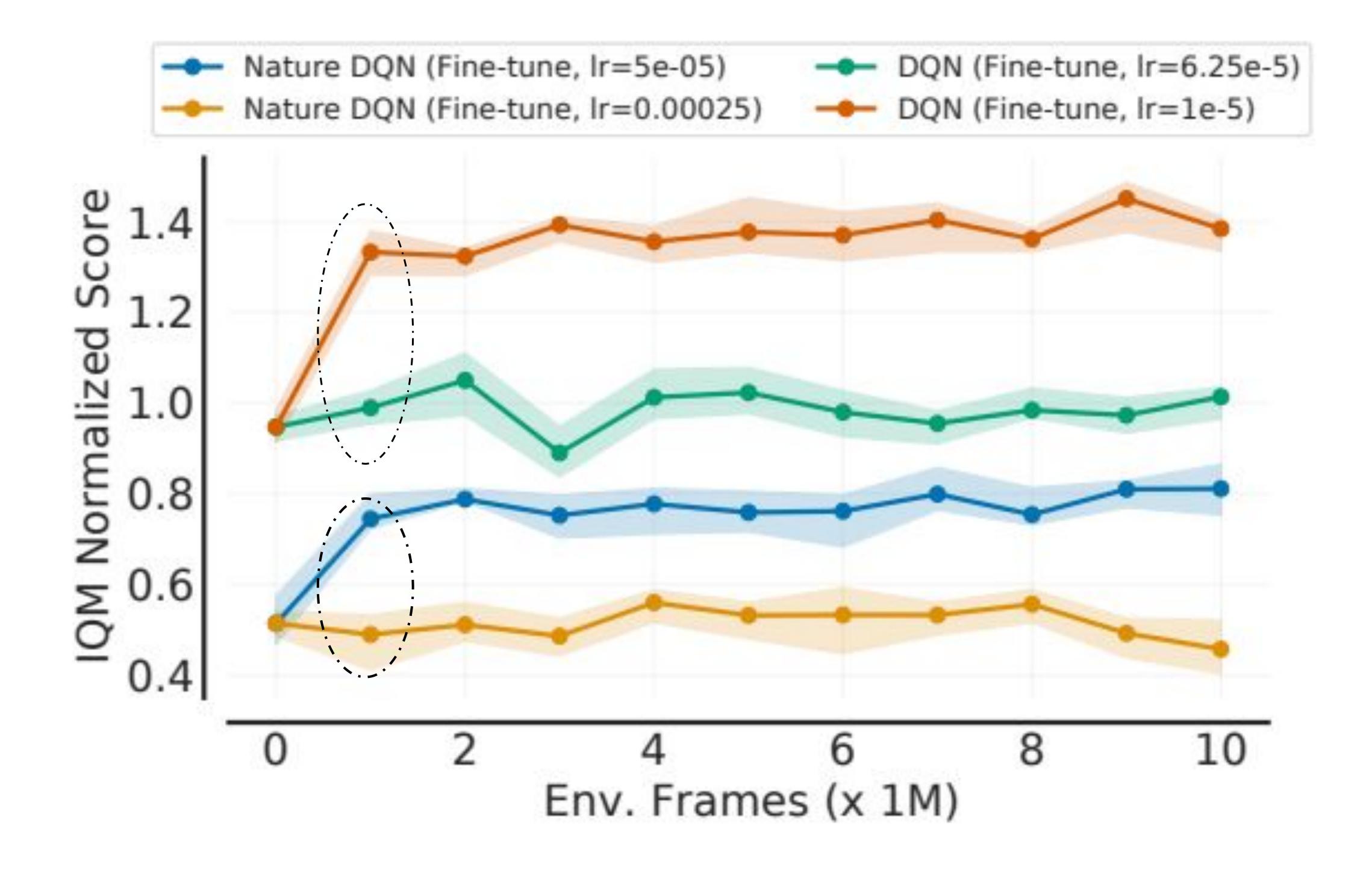
Given access to finite compute (10-12 hours on a TPU-v2), how much progress

Normalized Score% Teacher

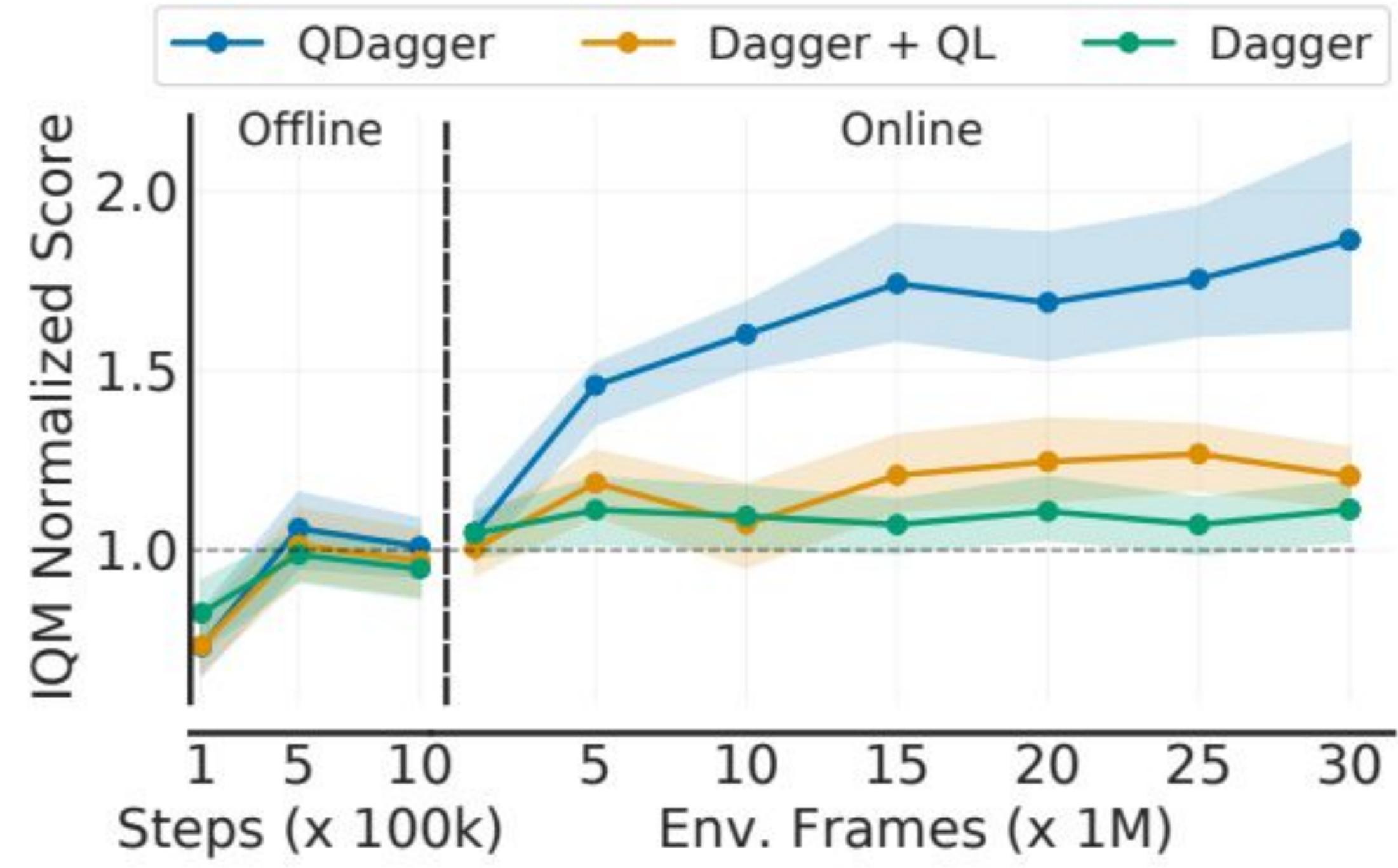
Reincarnation on BLE



Considerations in Reincarnating RL



Fine-tuning for Reincarnation

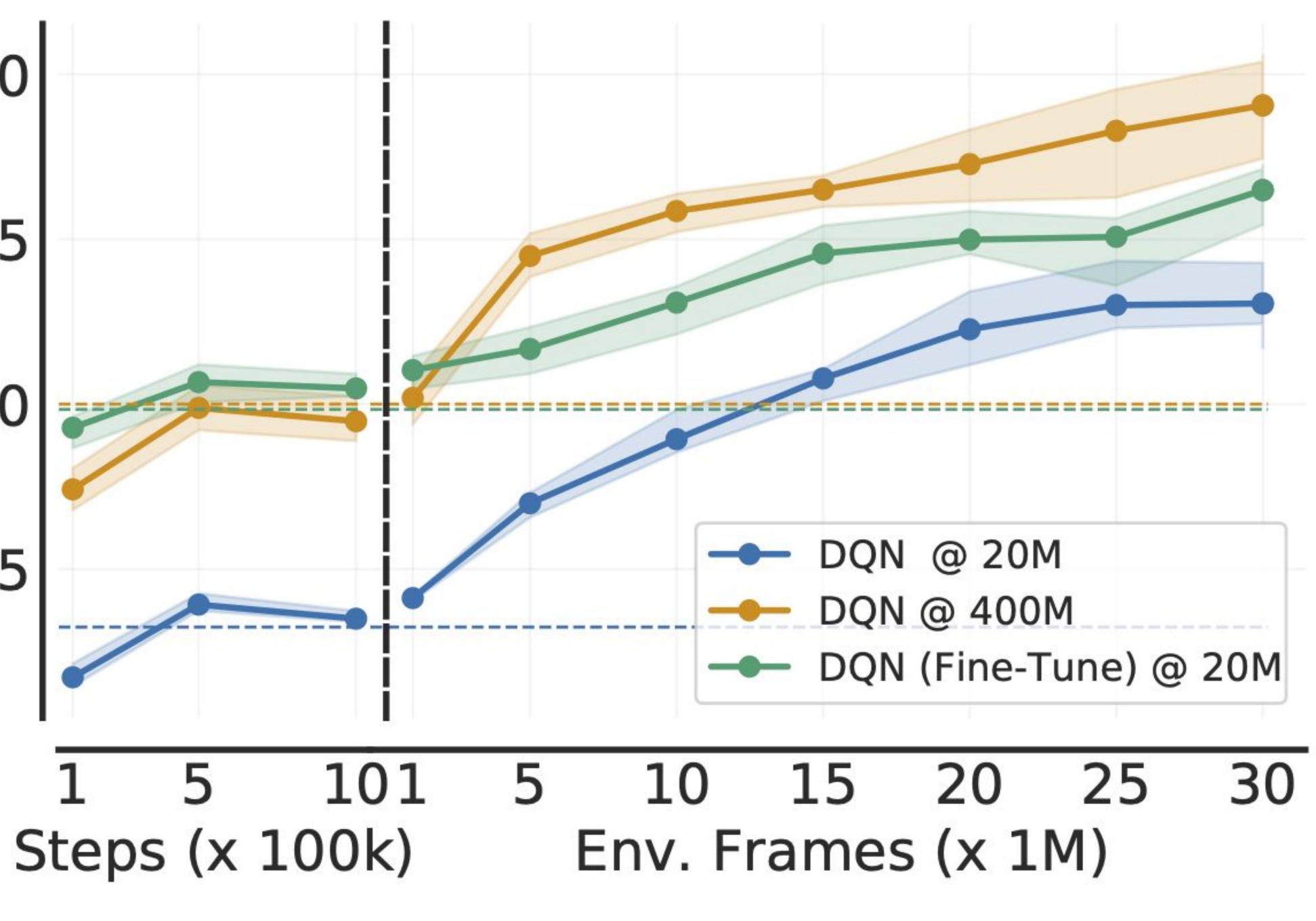


Reincarnation vs Distillation

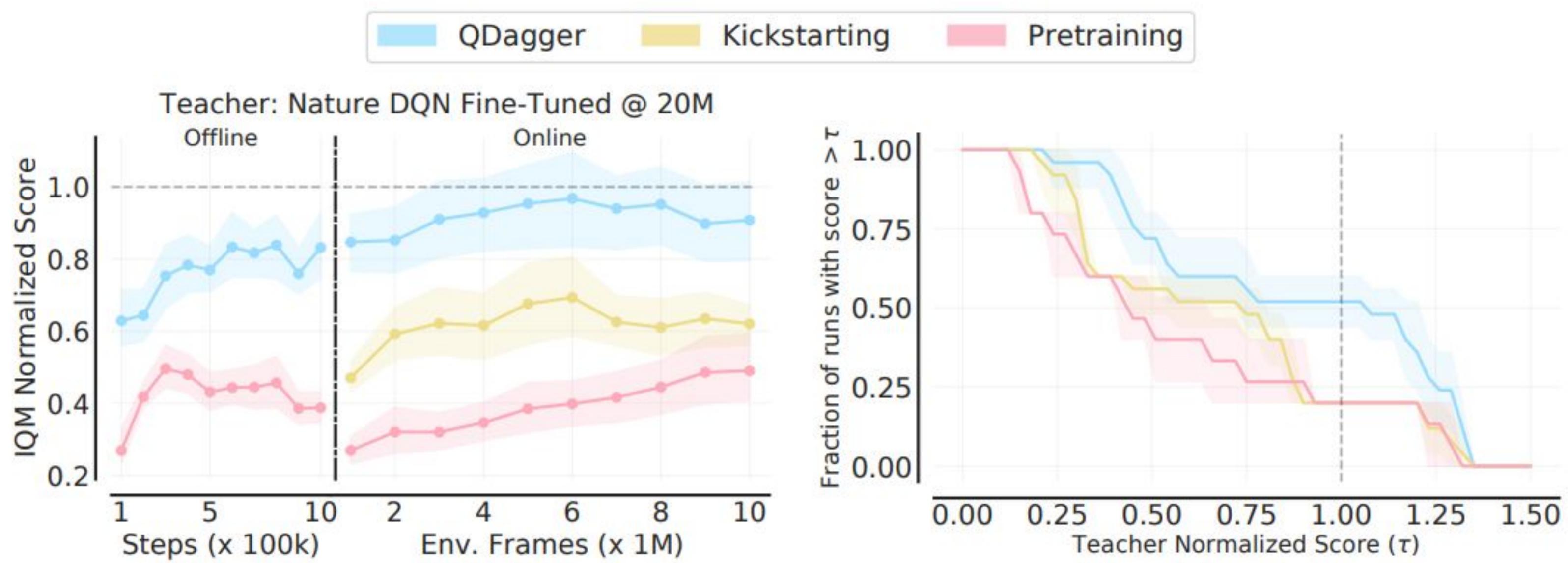
ອ 2.0 ວ S 1.5 nalized IQM No 0.5

Dependence of Prior Computation

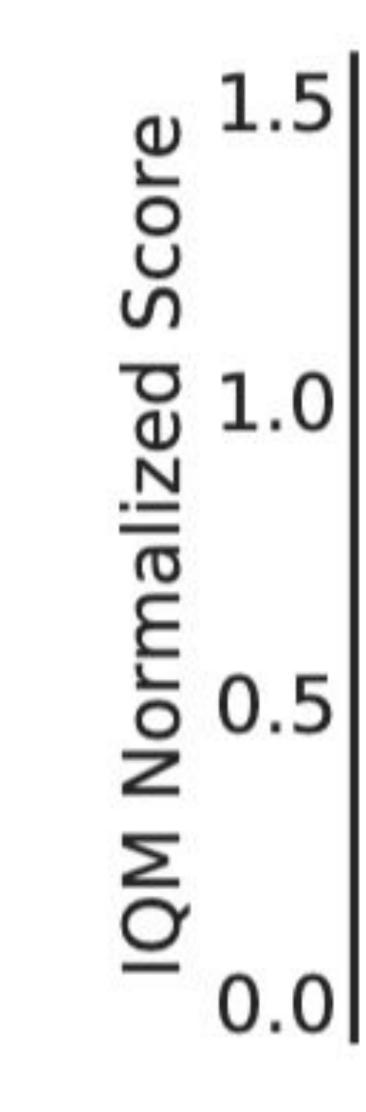
 $DQN \rightarrow Impala-CNN Rainbow (Reincarnation)$

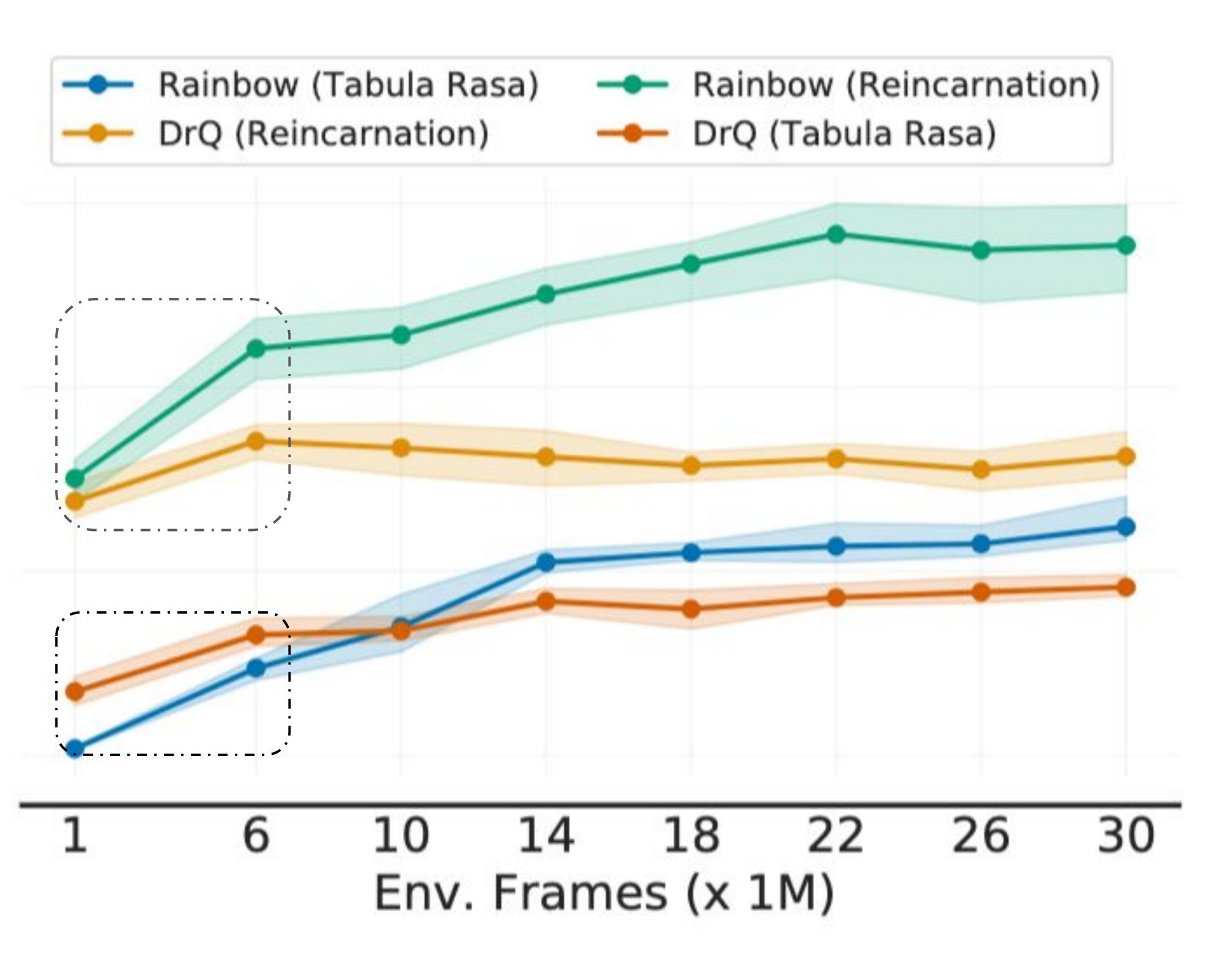


Reproducibility: Algorithmic Ranking is consistent.



Benchmarking Differences with Tabula Rasa





"If I have seen further than others, it is by standing upon the shoulders of giants." - Sir Isaac Newton

