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Tabula rasa Reinforcement Learning

Clean or Blank state: “Learning from 
scratch”
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Tabula Rasa RL works for research domains.



Large-scale RL problems: Tabula rasa workflow

Works well here. Not so much here.



Tabula rasa RL Playing DOTA with large-scale RL training

Actual learning curve (10 
months)

Restarting from scratch 
every time (~40 months)

Berner, Christopher, et al. "Dota 2 with large scale deep reinforcement learning." arXiv preprint arXiv:1912.06680 (2019).



Tabula rasa RL Solving Rubik’s cube with a robot hand

“We rarely trained experiments from 
scratch .. 

Restarting training from an uninitialized 
model would have caused us to lose 
weeks or months of training progress.”

OpenAI, et al. "Solving rubik’s cube with a robot hand." arXiv preprint arXiv:1910.07113 10 (2019).



Tabula rasa RL Fine-tuning with RL 



Deep RL is computationally expensive :(

AlphaStar: Trained on several TPUs 
for a month. Replication would cost 
> $1,000,000.
Excludes most researchers 
outside resource-rich labs.

Vinyals, Oriol, et al. "Grandmaster level in StarCraft II using multi-agent reinforcement learning." Nature 
575.7782 (2019): 350-354.



Deep RL is computationally expensive :(

Training 5 runs on 50+ Atari games 
for 200M frames (standard protocol) 
requires at least 1000+ GPU days.

Excludes most researchers 
outside resource-rich labs.



What if we didn’t always train 
RL agents from scratch 

for research?



 Reincarnating RL: An alternative workflow



 Reincarnating RL: An alternative workflow

“Prior computational work, such 
as learned network weights and 
policies, should be maximally 
leveraged.”



 Reincarnating RL: An alternative workflow

Let’s say you trained an 
agent A1 for a long time 
(e.g., days/weeks)

Experiment with 
better algorithms / 
architectures

Training another agent 
from scratch

(Tabula Rasa)



 Reincarnating RL: An alternative workflow

Let’s say you trained an 
agent A1 for a long time 
(e.g., days/weeks)

Experiment with 
better algorithms / 
architectures

Training another agent 
from scratch

Fine-tuning A1 

Transferring A1 to 
another agent and 
training that agent 
further

(Tabula Rasa)



Why Reincarnating RL?

● More compute and sample-efficient



Why Reincarnating RL?
● More compute and sample-efficient
● Tackle challenging problems without excessive computational resources
● Allows for continually updating/training agents

Tokamak 
Control

Balloon 
Navigation 

Chip Design



Why Reincarnating RL?
● More compute and sample-efficient
● Tackle challenging problems without excessive computational resources
● Allows for continually updating/training agents
● Suitable for real-world applications (prior computation is typically available)



Why Reincarnating RL?

● More compute and sample-efficient
● Tackle challenging problems without excessive 

computational resources 



Ad-hoc reincarnation strategies 
common in large-scale RL

Minecraft with VPT

AlphaStar

Reincarnating RL common rare in 
typical papers

AlphaGo



Ad-hoc reincarnation strategies 
common in large-scale RL

Minecraft with VPT

AlphaStar

Reincarnating RL common rare in 
typical papers

AlphaGo

But this doesn’t have to be the case!



 Reincarnating RL: What’s different?

● Lots of related work on imitation + RL, offline RL, transfer, 
LfD and so on .. 

● Such papers typically don't focus on the incorporating such 
methods as a part of how we do RL research itself.
○ We still largely train Atari agents from scratch ..



Reusing Prior Computation

Learned Policies Collected Data  Pretrained 
Representations

Learned Models

Others (e.g., 
LLMs, Skills)
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P 26

Goal:

A quick primer on RL

rewards



A quick primer on RL
How good is a state-action pair?
The Q-function at state s and action a, is the expected cumulative reward from taking action a in state s 
and then following the policy π. Formally, 

Bellman Optimality Equation

Solving for the optimal policy
Q-learning: Use a function approximator to estimate the Q-function, i.e. 

If the function approximator is a deep neural network => Deep Q-learning!
function parameters (weights)



Transfer an existing policy to a (more) sample-efficient 
value-based student agent.

Case Study: Policy to Value Reincarnating RL (PVRL)

Existing 
suboptimal 

teacher policy

Value-based Student 
(e.g., DQN, SAC)



Desiderata
● Teacher-agnostic

○ Student shouldn’t be constrained by teacher’s architecture and algorithm

Policy to Value Reincarnating RL (PVRL)

Suboptimal Teacher Value-based Student



Desiderata
● Teacher-agnostic
● Weaning off teacher

○ Undesirable to maintain teacher dependency for successive reincarnations

Policy to Value Reincarnating RL (PVRL)

Suboptimal Teacher Value-based Student



Desiderata
● Teacher-agnostic
● Weaning off teacher
● Compute Efficient

○ Reincarnation should be cheaper than training from scratch

Policy to Value Reincarnating RL (PVRL)

Suboptimal Teacher Value-based Student



Reincarnating RL as a Research Workflow



Reincarnation on ALE

Let’s assume we have 
access to the Nature 

DQN trained by
Mnih et. al. (2015)



Switching optimizer to Adam

DQN (Adam) seems 
to be better than 

Nature DQN.



DQN (Adam) vs. Fine-tuning Nature DQN

Fine-tuning DQN 
significantly 

improves 
performance.



Reincarnating DQN (Adam) via Fine-Tuning

Similar results 
to DQN (Adam) 

trained from scratch 
for 400M frames in 
few hours of training 
rather than a week!



Reincarnating a Different Architecture / Algorithm

Saved 50M 
frames or 1 
day of GPU 

training!



Desiderata
● Teacher-agnostic
● Weaning off teacher
● Compute Efficient

Recap: Policy to Value Reincarnating RL (PVRL)

Suboptimal Teacher Value-based Student



PVRL: Experimental Setup

● Interactive teacher policy: DQN trained for 400M frames (7 days on a single GPU)
○ Also assume access to replay data of the teacher 

● Transfer a student DQN using 10M frames (a few hours)
● 10 Atari games with sticky actions (for stochasticity)
● Evaluation: Interquartile Mean [1]

[1] For more details, see Agarwal, Rishabh et al. Deep RL at the Edge of the Statistical Precipice. NeurIPS 2021 (Outstanding Paper).



PVRL: Closely Related Methods

Adapting existing approaches:
● Rehearsal: Replaying Teacher Samples
● Pretraining: Offline RL on Teacher Data
● Kickstarting: On-policy Distillation + Q-learning
● DQfD: Learning from teacher demonstrations
● JSRL: Improving data collection using teacher



PVRL on ALE: DQN (Adam) @ 400M → DQN



QDagger: A simple PVRL baseline

Q-learning loss On-policy distillation

Decaying coefficient to wean off 
the teacher.Combine Q-learning with Dagger. Phases:

- (Offline) Pretrain on Teacher data
- (Online) Train on self-collected data.



Reincarnation on a difficult control task: Humanoid Run

Saved 10M frames 
(10-12 hours on a V100)



Reincarnation on Balloon Learning Environment (BLE)

[1] Bellemare, Marc G., et al. "Autonomous navigation of stratospheric balloons using reinforcement learning." Nature 588.7836 (2020): 77-82.
[2] The Balloon Learning Environment. https://ai.googleblog.com/2022/02/the-balloon-learning-environment.html

● Access to the existing agent trained for 
a month with distributed RL.

● Given access to finite compute (10-12 
hours on a TPU-v2), how much progress 
can be made?

http://ai.googleblog.com/2022/02/the-balloon-learning-environment.html


Reincarnation on BLE



Considerations in Reincarnating RL



Fine-tuning for Reincarnation



Reincarnation vs Distillation



Dependence of Prior Computation



Reproducibility: Algorithmic Ranking is consistent.



Benchmarking Differences with Tabula Rasa




