
Reincarnating RL:
Reusing Prior Computation to
Accelerate Progress
NeurIPS 2022

agarwl.github.io/reincarnating_rl

https://agarwl.github.io/reincarnating_rl

Tabula rasa Reinforcement Learning

Clean or Blank state: “Learning from
scratch”

bit.ly/reincarnating_rl

https://arxiv.org/abs/2206.01626

Tabula Rasa RL works for research domains.

Large-scale RL problems: Tabula rasa workflow

Works well here. Not so much here.

Tabula rasa RL Playing DOTA with large-scale RL training

Actual learning curve (10
months)

Restarting from scratch
every time (~40 months)

Berner, Christopher, et al. "Dota 2 with large scale deep reinforcement learning." arXiv preprint arXiv:1912.06680 (2019).

Tabula rasa RL Solving Rubik’s cube with a robot hand

“We rarely trained experiments from
scratch ..

Restarting training from an uninitialized
model would have caused us to lose
weeks or months of training progress.”

OpenAI, et al. "Solving rubik’s cube with a robot hand." arXiv preprint arXiv:1910.07113 10 (2019).

Tabula rasa RL Fine-tuning with RL

Deep RL is computationally expensive :(

AlphaStar: Trained on several TPUs
for a month. Replication would cost
> $1,000,000.
Excludes most researchers
outside resource-rich labs.

Vinyals, Oriol, et al. "Grandmaster level in StarCraft II using multi-agent reinforcement learning." Nature
575.7782 (2019): 350-354.

Deep RL is computationally expensive :(

Training 5 runs on 50+ Atari games
for 200M frames (standard protocol)
requires at least 1000+ GPU days.

Excludes most researchers
outside resource-rich labs.

What if we didn’t always train
RL agents from scratch

for research?

 Reincarnating RL: An alternative workflow

 Reincarnating RL: An alternative workflow

“Prior computational work, such
as learned network weights and
policies, should be maximally
leveraged.”

 Reincarnating RL: An alternative workflow

Let’s say you trained an
agent A1 for a long time
(e.g., days/weeks)

Experiment with
better algorithms /
architectures

Training another agent
from scratch

(Tabula Rasa)

 Reincarnating RL: An alternative workflow

Let’s say you trained an
agent A1 for a long time
(e.g., days/weeks)

Experiment with
better algorithms /
architectures

Training another agent
from scratch

Fine-tuning A1

Transferring A1 to
another agent and
training that agent
further

(Tabula Rasa)

Why Reincarnating RL?

● More compute and sample-efficient

Why Reincarnating RL?
● More compute and sample-efficient
● Tackle challenging problems without excessive computational resources
● Allows for continually updating/training agents

Tokamak
Control

Balloon
Navigation

Chip Design

Why Reincarnating RL?
● More compute and sample-efficient
● Tackle challenging problems without excessive computational resources
● Allows for continually updating/training agents
● Suitable for real-world applications (prior computation is typically available)

Why Reincarnating RL?

● More compute and sample-efficient
● Tackle challenging problems without excessive

computational resources

Ad-hoc reincarnation strategies
common in large-scale RL

Minecraft with VPT

AlphaStar

Reincarnating RL common rare in
typical papers

AlphaGo

Ad-hoc reincarnation strategies
common in large-scale RL

Minecraft with VPT

AlphaStar

Reincarnating RL common rare in
typical papers

AlphaGo

But this doesn’t have to be the case!

 Reincarnating RL: What’s different?

● Lots of related work on imitation + RL, offline RL, transfer,
LfD and so on ..

● Such papers typically don't focus on the incorporating such
methods as a part of how we do RL research itself.
○ We still largely train Atari agents from scratch ..

Reusing Prior Computation

Learned Policies Collected Data Pretrained
Representations

Learned Models

Others (e.g.,
LLMs, Skills)

Reusing Prior Computation

Learned Policies Collected Data

 Pretrained Representations

Policy-based Student

Value-based
Student

Model-based Student

Learned Models

Others (e.g.,
LLMs, Skills)

Reusing Prior Computation

Learned Policies Collected Data Pretrained
Representations

Learned Models

Others (e.g.,
LLMs, Skills)

Reusing Prior Computation

Learned Policies Collected Data

 Pretrained Representations

Policy-based Student

Value-based
Student

Model-based Student

Learned Models

Others (e.g.,
LLMs, Skills)

P 26

Goal:

A quick primer on RL

rewards

A quick primer on RL
How good is a state-action pair?
The Q-function at state s and action a, is the expected cumulative reward from taking action a in state s
and then following the policy π. Formally,

Bellman Optimality Equation

Solving for the optimal policy
Q-learning: Use a function approximator to estimate the Q-function, i.e.

If the function approximator is a deep neural network => Deep Q-learning!
function parameters (weights)

Transfer an existing policy to a (more) sample-efficient
value-based student agent.

Case Study: Policy to Value Reincarnating RL (PVRL)

Existing
suboptimal

teacher policy

Value-based Student
(e.g., DQN, SAC)

Desiderata
● Teacher-agnostic

○ Student shouldn’t be constrained by teacher’s architecture and algorithm

Policy to Value Reincarnating RL (PVRL)

Suboptimal Teacher Value-based Student

Desiderata
● Teacher-agnostic
● Weaning off teacher

○ Undesirable to maintain teacher dependency for successive reincarnations

Policy to Value Reincarnating RL (PVRL)

Suboptimal Teacher Value-based Student

Desiderata
● Teacher-agnostic
● Weaning off teacher
● Compute Efficient

○ Reincarnation should be cheaper than training from scratch

Policy to Value Reincarnating RL (PVRL)

Suboptimal Teacher Value-based Student

Reincarnating RL as a Research Workflow

Reincarnation on ALE

Let’s assume we have
access to the Nature

DQN trained by
Mnih et. al. (2015)

Switching optimizer to Adam

DQN (Adam) seems
to be better than

Nature DQN.

DQN (Adam) vs. Fine-tuning Nature DQN

Fine-tuning DQN
significantly

improves
performance.

Reincarnating DQN (Adam) via Fine-Tuning

Similar results
to DQN (Adam)

trained from scratch
for 400M frames in
few hours of training
rather than a week!

Reincarnating a Different Architecture / Algorithm

Saved 50M
frames or 1
day of GPU

training!

Desiderata
● Teacher-agnostic
● Weaning off teacher
● Compute Efficient

Recap: Policy to Value Reincarnating RL (PVRL)

Suboptimal Teacher Value-based Student

PVRL: Experimental Setup

● Interactive teacher policy: DQN trained for 400M frames (7 days on a single GPU)
○ Also assume access to replay data of the teacher

● Transfer a student DQN using 10M frames (a few hours)
● 10 Atari games with sticky actions (for stochasticity)
● Evaluation: Interquartile Mean [1]

[1] For more details, see Agarwal, Rishabh et al. Deep RL at the Edge of the Statistical Precipice. NeurIPS 2021 (Outstanding Paper).

PVRL: Closely Related Methods

Adapting existing approaches:
● Rehearsal: Replaying Teacher Samples
● Pretraining: Offline RL on Teacher Data
● Kickstarting: On-policy Distillation + Q-learning
● DQfD: Learning from teacher demonstrations
● JSRL: Improving data collection using teacher

PVRL on ALE: DQN (Adam) @ 400M → DQN

QDagger: A simple PVRL baseline

Q-learning loss On-policy distillation

Decaying coefficient to wean off
the teacher.Combine Q-learning with Dagger. Phases:

- (Offline) Pretrain on Teacher data
- (Online) Train on self-collected data.

Reincarnation on a difficult control task: Humanoid Run

Saved 10M frames
(10-12 hours on a V100)

Reincarnation on Balloon Learning Environment (BLE)

[1] Bellemare, Marc G., et al. "Autonomous navigation of stratospheric balloons using reinforcement learning." Nature 588.7836 (2020): 77-82.
[2] The Balloon Learning Environment. https://ai.googleblog.com/2022/02/the-balloon-learning-environment.html

● Access to the existing agent trained for
a month with distributed RL.

● Given access to finite compute (10-12
hours on a TPU-v2), how much progress
can be made?

http://ai.googleblog.com/2022/02/the-balloon-learning-environment.html

Reincarnation on BLE

Considerations in Reincarnating RL

Fine-tuning for Reincarnation

Reincarnation vs Distillation

Dependence of Prior Computation

Reproducibility: Algorithmic Ranking is consistent.

Benchmarking Differences with Tabula Rasa

