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Why do we need COSCI-GAN?

e Various medical data coming from same patient:
o Electronic Health Record (EHR)
o Medical Imaging (MRI, CT, X-ray, etc.)
o Multivariate time series (EEG, ECG, etc.) w

e Challenge of Data Scarcity due to privacy
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o Data Augmentation

e Poor performance of current State-of-the-art methods in synthesizing MTS
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COmmon Source Coordinated GAN (COSCI-GAN)

e Aims to preserve inter-channel/feature correlation.
e Assign a Generator for each feature/channel and add a Central Discriminator in the end.
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EEG Eye State Dataset

e 14 channels
e Label indicates the eye state (Open or Close)
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Classification experiment : Eye Blink Detection

e Compare COSCI-GAN against a baseline method
o Baseline method : An LSTM-based GAN generating all channels together

e All-Synthetic Experiment
o Using only synthetic data to train the classifier, test on real dataset
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Synthetic Data could be as good as Real Data
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Classification experiment : Eye Blink Detection
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e Compare COSCI-GAN against a baseline method
o Baseline method : An LSTM-based GAN generating all channels together

e All-Synthetic Experiment
o Using only synthetic data to train the classifier, test on real dataset
e Augmentation Experiment
o Augment the real dataset with an equal number of synthetic training samples
m  Will that increase the accuracy of the classifier?



Robustness of COSCI-GAN
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Comparing with State-of-the-art (SOTA) Methods

e Compare COSCI-GAN with:
o TimeGAN, Yoon et al., NeurlPS 2019
o Fourier Flows, Alaa et al., ICLR 2021 (Non-GAN method)

o Use their code to generate EEG synthetic data
m Repeat Augmentation experiment
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COSCI-GAN is significantly better than SOTA in Augmentation
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Conclusion

o COSCI-GAN
m Designed to be well suited for generating MTS from a common source
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m Have a Central Discriminator to preserve inter-channel correlation

o Synthetic EEG MTS, COSCI-GAN vs SOTA
m Better correlation
m Better classification utility

o Future Directions:
m Parallelize COSCI-GAN to speed up the training procedure
m Implement COSCI-GAN with modern architectures such as transformers
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