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VIRTUAL SCREENING

1. Early phases of biomedical research involve the identification of targets for a disease, 

followed by high-throughput screening (HTS) experiments to determine hits within the 

compound library. 

2. Then, these compounds are optimized to increase potency and other desired target properties. 

3. In the final phases of the R&D pipeline, drug candidates have to pass a series of rigorous 

controlled tests in clinical trials to be considered for regulatory approval. 

4. On average, this process takes 10-15 years end-to-end and costs in excess of ∼2 billion US 

dollars. 

5. HTS is highly time and cost-intensive. Therefore, it is critical to find good potential 

compounds effectively for the HTS step in short period of time for novel compound discovery.
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KEY TAKEAWAYS

1. Novelty: We developed a new compound fingerprinting method based on topological features. 

2. Performance: We develop and benchmark ML approaches; and outperform the state-of-the-art by a 

wide and statistically significant margin: 93% gain for Cleves-Jain and 54% gain for DUD-E Diverse 

dataset.

3. Small data sets: effective few-shot classification (only 2-3 active ligands per drug target for training)

4. ML integration: features suited for SoTA Neural Networks, as well as traditional ML methods

5. Computational efficiency: Full training + analysis on a laptop ~7 minutes (for a library of 1100 

compounds, distributed across the 8 cores of an Intel Core i7 CPU (100GB RAM))

6. Native integration of new information: in contrast with all other fingerprinting approaches.
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VIRTUAL SCREENING METHODS FOR 

HIT IDENTIFICATION

Structure-based methods

1. Molecular docking is the most common 

method.

2. Molecular docking approach models the 

interaction between a small molecule and a 

drug target at the atomic level. → This 

allows us to characterize the behavior of 

small molecules in the binding site of drug 

targets. 

3. It requires:

1. Knowledge of the binding site before 

docking process. 

2. Prediction of the ligand conformation 

as well as its position and orientation 

in binding site.

Ligand-based methods

1. We know a set of active ligands that can 

inhibit a drug target.

2. There is little or no structural information 

available for those drug targets.

3. Drug candidates are compared against a 

library of dozens/hundreds of active 

ligands and thousands of decoys (inactive 

ligands).
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KEY CONTRIBUTIONS
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KEY METRIC: ENRICHMENT FACTOR

▪ Enrichment Factor (EF) is the most common performance evaluation metric for Virtual Screening 

methods.

▪ VS method φ ranks compounds in the database by the similarity score. We measure the similarity 

score using the inverse of Euclidian distance between the embeddings of an anchor and drug 

candidate.

▪ Let N be the total number of ligands in the dataset, Aφ be the number of true positives (i.e., correctly 

predicted active ligands) in the first α% of all ligands and Nactives be the number of active ligands in 

the whole dataset. Then,

EFα% = 
Aφ / Nactives

α / 100

▪ Notice that with this definition, the maximum score for EFα% is 
100

𝛼
, i.e., 100 for EF1% and 20 for 

EF5%. 

a.k.a. prediction at k
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RESULTS

Relative gains are relative to the next best performing model. Mean and standard deviation of EF scores 

evaluated by 5-fold cross-validation.
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KEY CONTRIBUTIONS

1. We use multiparameter persistent homology (PH) of the Vietoris-Rips complexes to produce 

topological fingerprints for compounds. 

2. Our multiparameter PH approach can successfully incorporate more than one domain function to 

the PH process such as atomic mass, partial charge, bond type, ionization energy, electron affinity.

3. We perform extensive numerical experiments in Virtual Screening (VS), showing that our ToDD

models outperform all state-of-the-art methods by a wide margin.

4. The strong hierarchical topological representations enable ToDD to become a model

agnostic method that is extensible to state-of-the-art neural networks (ConvNeXt, Vision 

Transformer) as well as ensemble methods like random forests (RF).

5. Transfer learning by finetuning triplet networks where pretrained ConvNeXt and Vision Transformer 

models serve as the backbone produce successful results on few-shot classification tasks.
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▪ ECFP (Extended Connectivity Fingerprints) -> Most popular compound 

fingerprinting technique based on Morgan algorithm.

▪ Step 1: A set of numbers is assigned to each atom in the compound using the Daylight 

atomic variants (7 properties of an atom):

1. # of non-hydrogen immediate neighbors

2. Valency minus the # of connected hydrogens

3. Atomic number

4. Atomic mass

5. Formal charge

6. # of attached hydrogens

7. Whether the atom is part of a ring or not (1, if yes, 0 no)

RELATED WORK
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▪ Step 1: We convert the features of an atom to an integer using a hashing function. 

Consider the atom 4 in our compound Butyramide:

1. # of non-hydrogen immediate neighbors = 3

2. Valency minus the # of connected hydrogens = 4

3. Atomic number = 6

4. Atomic mass = 12

5. Formal charge = 0

6. # of attached hydrogens = 0

7. Whether the atom is part of a ring or not (1, if yes, 0 no) = 0

RELATED WORK

Hash values are unique like fingerprints, 

But the original values cannot be recovered from hash values
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▪ Step 1: We repeat this process for all the 6 vertices in the compound and get a set of 

hash values:

RELATED WORK

Initial representation of Butyramide with a set of hash values (identifiers).

Notice that atom 2 and 3 have the same integer identifier after the first step.
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▪ Step 2: To include information about the neighborhood of the atoms, we update these identifiers:

1.  First, an array is initialized containing the iteration number

and the initial identifier of the atom in question. 

2.  Then, we add to this array the identifier of each non-hydrogen

nearest neighbor along with the bond order with that particular 

atom:

[(1, -2155244659601281804), (1, -3602994677767288312), (1, 8311098529014133067), (2, 8573586092015465947)]

3.  Same as before, this list is hashed to get an updated integer identifier.

4.  This process is repeated for all atoms for a prespecified number of iterations. 

RELATED WORK

Single bond Double bondIteration number Single bond

Identifier (hash value)
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▪ Step 2: To include information about the neighborhood of the atoms, we update these identifiers:

4.  This process is repeated for all atoms for a prespecified number of 

iterations. The updated identifiers after first iteration will be: 

RELATED WORK

Notice that atom 2 and 3 do not have the same integer identifier after the second step.

This is because the atoms are identical when we look at them individually, 

but become different when using their neighborhood information.

Note: After each iteration, the 

identifiers are appended to a 

feature list. 

So if the compound has 6 

atoms and if we have done 2 

iterations of update, then our 

feature set will become a 

vector of 12 identifiers (hash 

values).
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▪ Step 3: As we increase the radius to include information from K nearest neighbors, we end up generating 

different identifiers for the same substructures. 

RELATED WORK

• For instance, after 2 iterations the identifiers generated for Oxygen and Nitrogen 

are: -5964710996914813053 and 8916398073441202914 respectively. 

• This difference is expected since the regions started at different atoms.

• For each compound, we deduplicate the identifiers that represent the same substructure. 

• Before the iteration begins: identifier is simply 

double-bonded oxygen. 

• After one iteration, the identifier represents a 

carbonyl group. 

• After two iterations, the identifier represents an 

aliphatic carboxylic acid amide.
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▪ Step 4: The last step is to convert these identifiers into a computer-usable bit vector:

1. First, the user has to choose the length of the fingerprint vector. Traditionally, a length of 1024 is used.

2. Once the length is decided, initialize a zero-vector of the decided length.

3. Divide each identifier with the vector length (1024) and calculate the remainder. 

remainders = [908, 331, 244, 520, 475, 176, 849, 840, 707, 742, 84, 553, 632, 358] 

4. Lastly, set the values in the bit vector to one at the indices equal to the remainders. In other words, set the  

values to 1 in the positions 908, 331, …, 358.

RELATED WORK

• Terrible way, because different hash values can give the same remainder 

when divided by the vector length. → Bit Collision → Increasing the 

vector length to avoid bit collision causes curse of dimensionality.

• Also: Hash function is irreversible. No way 

back from hash identifiers back to the 

compound topology!!
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RELATED WORK
▪ Another popular technique SMILES 

formulated the compound fingerprinting 

task as string generation problem.

▪ SMILES strings are reversible i.e., they 

can be translated into graphs.

▪ However. SMILES has 2 limitations:

1. Two molecules with similar chemical 

structures may be encoded into markedly 

different SMILES strings.

2. Essential chemical properties such as 

molecule validity are easier to express 

on graphs rather than linear SMILES 

representations.
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▪ Homology: Mathematical way of counting connected components and loops in 

topological spaces. 

• Homology is a topological invariant, you can’t change the number of connected components 

or holes of an object by bending/stretching it. 

• Simplex: Represents the simplest polytope in any given space. (Generalization of the notion of 

a triangle or tetrahedron to arbitrary dimensions.) --> convex hull of 𝑛+1 independent points 

HOMOLOGY

k-simplex is a point, a line segment, a 

triangle, a tetrahedron ,etc..
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▪ Persistent Homology: A topological data analysis tool to study qualitative features of 

the data across the increasing sequence of simplex complexes.

• Input: Increasing sequence of simplex complexes.

• Output: Persistence homology barcodes, which show the homology at each stage.

• Methods: 

1. Vietoris-Rips Complexes 

2. Alpha Complexes

3. Cech Complexes

4. Delaunay Complexes

PERSISTENT HOMOLOGY
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▪ Persistent Homology is our 

main tool to distinguish shapes 

of substructures. 

▪ i-dim homology counts the     

# of i-dim holes.

▪ 0-dim holes are just connected 

components.

▪ First example has 6 disks, so 

0-dim homology has rank 6 

reflecting those 6 connected 

components. 

PERSISTENT HOMOLOGY
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▪ Persistent Homology is our main 

tool to distinguish shapes of 

substructures. 

▪ i-dim homology counts the # of     

i-dim holes.

▪ 1-dim homology counts the # of 

holes that are like a 

circle/loop/cylinder.

▪ Second example has 3 loops, hence 

1-dim homology has rank 3. 

▪ Third example has 6 loops, hence 

1-dim homology has rank 6. 

PERSISTENT HOMOLOGY
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▪ Persistent Homology is our main 

tool to distinguish shapes of 

substructures. 

▪ i-dim homology counts the # of     

i-dim holes.

▪ We also can count the 2-dim holes 

(in case we use the 3D 

conformations of compounds 

instead of their 2D geometry).

▪ A hollow sphere or taurus has each 

1 2-dim homology. 

PERSISTENT HOMOLOGY
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PERSISTENT HOMOLOGY

▪ Key Idea: Construct a graph 

piece-by-piece and track the 

topological changes. 

▪ We capture 2 topological 

summaries: connected 

components (H0) and loops (H1). 
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PERSISTENCE BARCODES
Input: Increasing 

spaces (as more 

edges and triangles 

get added)

Output: Barcode

Cubic computation 

time in the number 

of spaces.

Barcodes track the 

number of 0 and 1-dim 

holes as the spaces 

increase.

Vertical axis has no meaning / 

you can swap the order of the bars within the fixed dimension

Horizontal axis is a notion of a scale / 

how far you’re along in your increasing sequence of spaces 

Longer bars are interpreted as more features &

Shorter parts are more representative of noise 
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PERSISTENCE BARCODES
As the space 

increases, the 

disparate points 

connect up together 

finally into one 

connected component 

and remain as 1 

connected component 

forever. 

As you see in the 

second shape, we 

have 2 1-dim holes. 

As we go from the 

second shape to the 

third shape, one of 

the 1-dim holes gets 

filled in. 
As we go from the 

third shape to the 

fourth shape, the 

other 1-dim hole also 

gets filled in. 
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PERSISTENCE BARCODES

If you look at the 1-dim 

barcode plot, bottom hole 

which is born first corresponds 

to this 1-dim bar which is born 

first. 

The other 1-dim hole which is 

born second corresponds to the 

other 1-dim bar which is born 

second. 

The 1-dim that is born first also 

dies first in this example.
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FROM PERSISTENCE BARCODES TO PERSISTENCE 

DIAGRAMS
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BETTI VECTORIZATION OF PERSISTENCE 

BARCODES
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1. Cleves-Jain Dataset: 

• Relatively small dataset that contains 1149 compounds.

• There are 22 different drug targets, and for each one of them the dataset provides only 2-3 

active compounds dedicated for model training, which presents a few-shot learning task. 

• All targets are associated with 4 to 30 active compounds dedicated for model testing.

• Additionally, the dataset contains 850 decoy compounds (used for all 22 targets).

• The aim is to find the active compounds among the pool of active compounds and decoys. 

DATASETS
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1. Cleves-Jain Dataset: 

DATASETS

List of unique atoms (10): C, O, N, H, S, Cl, F, P, Br, I
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1. Cleves-Jain Dataset: 

DATASETS
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2.   DUD-E Dataset (Diverse Subset): 

• DUD-E (Directory of Useful Decoys, Enhanced) is a comprehensive ligand dataset with 102 

targets and approximately 1.5 million compounds.

• The targets are categorized into 7 classes with respect to their protein type. 

• The "Diverse subset" of DUD-E contains targets from each category to give a balanced 

benchmark dataset for Virtual Screening methods. 

• Diverse subset contains 116,105 compounds from 8 target and 8 decoy sets. One decoy set is 

used per target.

DATASETS
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2.   DUD-E Dataset (Diverse Subset): 

DATASETS
List of unique atoms (11): C, O, N, H, S, Cl, F, P, Br, I, Si
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2.   DUD-E Dataset (Diverse Subset): 

DATASETS
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DATASETS
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ATOMIC MASS FILTRATION (SUBLEVEL ORDER: 0)
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ATOMIC MASS FILTRATION (SUBLEVEL ORDER: 1)
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ATOMIC MASS FILTRATION (SUBLEVEL ORDER: 2)
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ATOMIC MASS FILTRATION (SUBLEVEL ORDER: 3-9)
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PARTIAL CHARGE FILTRATION (SUBLEVEL ORDER: 0)
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PARTIAL CHARGE FILTRATION (SUBLEVEL ORDER: 1)
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PARTIAL CHARGE FILTRATION (SUBLEVEL ORDER: 2)

Same as Level 1
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PARTIAL CHARGE FILTRATION (SUBLEVEL ORDER: 3)
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PARTIAL CHARGE FILTRATION (SUBLEVEL ORDER: 4)

Same as Level 3
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PARTIAL CHARGE FILTRATION (SUBLEVEL ORDER: 5)
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PARTIAL CHARGE FILTRATION (SUBLEVEL ORDER: 6)

Same as Level 5
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PARTIAL CHARGE FILTRATION (SUBLEVEL ORDER: 7)
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PARTIAL CHARGE FILTRATION (SUBLEVEL ORDER: 8)



Data & AI- AI Lab COPD Update54

PARTIAL CHARGE FILTRATION (SUBLEVEL ORDER: 9)
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ML PIPELINE

▪ We construct different ToDD models, namely: ToDD-ViT, ToDD-ConvNeXt and ToDD-RF to test the 

generalizability and scalability of topological features. 

▪ ToDD-ViT and ToDD-ConvNeXt are Triplet network architectures with Vision Transformer (ViT_b_16) and 

ConvNeXt_tiny models pretrained on ILSVRC-2012 ImageNet, serving as the backbone of the Triplet network.

▪ MP signatures of compounds are applied nearest neighbour interpolation to increase their resolutions to 2242, 

followed by normalization. 

▪ We only use GaussianBlur with kernel size 52 and standard deviation 0.05 as a data augmentation technique.

▪ Transfer learning via fine-tuning 260 ViT_b_16 and ConvNeXt_tiny models using Adam optimizer with a 

learning rate of 5e-4, no warmup or layerwise learning rate decay, weight decay of 1e-4, and a batch size 

of 64 for 10 epochs led to significantly better performance in Enrichment Factor and AUC scores compared to 

training from scratch. 

▪ The performance of all models was assessed by 5-fold cross-validation (CV).
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ML PIPELINE
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ML PIPELINE
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ML PIPELINE

▪ Sampling Strategy

▪ Learning metric embeddings via 

triplet margin loss on large-scale 

datasets poses a special challenge in 

sampling all distinct triplets (x, x+, 

x−), and collecting them into a single 

database causes excessive overhead 

in computation time and memory.
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ML PIPELINE

▪ Sampling Strategy

▪ Since triplets (x, x+, x−) with                      

d(x, x−) > d(x, x+) + α have already negative 

queries sufficiently distant to the anchor 

compounds from the support set in the 

embedding space, they are not sampled to 

create the training dataset. 

▪ We only sample triplets that satisfy            

d(x, x−) < d(x, x+) (where negative query is 

closer to the anchor than the positive) and 

d(x, x+) < d(x, x−) < d(x, x+) + α (where 

negative query is more distant to the anchor 

than the positive, but the distance is less than 

the margin).
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RESULTS

▪ ToDD models consistently achieve the best performance on both Cleves-Jain and DUD-E 

Diverse datasets across all targets and EFα% levels.

▪ ToDD learns hierarchical topological representations of compounds using their atoms’ periodic 

properties, and captures the complex chemical properties essential for high-throughput VS. 

These strong hierarchical topological representations enable ToDD to become a model agnostic 

method that is extensible to state-of-the-art neural networks as well as ensemble methods like 

random forests (RF).

▪ For small-scale datasets such as Cleves-Jain, RF is less accurate than ViT despite regularization 

by bootstrapping and using pruned, shallow trees, because small variations in the data may 

generate significantly different decision trees. For large-scale datasets such as DUD-E Diverse, 

ToDD-RF and ToDD-ConvNeXt exhibit comparable performances except for: CP3A4, GCR 

and HIVRT. We conclude that transformer-based models are more robust than convolutional 

models despite increased computation time.
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RESULTS

Relative gains are relative to the next best performing model. Mean and standard deviation of EF scores 

evaluated by 5-fold cross-validation.
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RESULTS
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ABLATION STUDY

1.  Multimodal Learning

▪ We first address the question of how adding different domain information improves 

the model performance. 

▪ We demonstrate one-by-one the importance of each modality (atomic mass, partial 

charge and bond type) used for graph filtration to the classification of each target. 

▪ We find that their importance varies across targets in a unimodal setting, but the 

orthogonality of these information sources offers significant gain in EF scores when 

the topological fingerprints learned from each modality are integrated into a joined 

multimodal representation.
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ABLATION STUDY

2.  Model Choice

▪ For small-scale datasets such as Cleves-Jain, RF is less accurate than ViT despite 

regularization by bootstrapping and using pruned, shallow trees, because small 

variations in the data may generate significantly different decision trees. 

▪ For large-scale datasets such as DUD-E Diverse, ToDD-RF and ToDD-ConvNeXt

exhibit comparable performances except for: CP3A4, GCR and HIVRT. 

▪ We conclude that transformer-based models are more robust than convolutional 

models despite increased computation time.
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ABLATION STUDY

2.  Model Choice

▪ In order to effectively handle the large-scale datasets that have long-tailed 

distributions, we undersample from the majority class (decoys). 

▪ Specifically, while training RF for the binary classification task on the drug targets of 

DUD-E Diverse, we use 80% of the active compounds and the same number of 

randomly chosen decoys for training. 

▪ Undersampling decoys to avoid heavy class imbalance achieves better trade-offs 

between the accuracies of active compounds and decoys.
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ABLATION STUDY

3. Network Architecture

▪ We investigated ways to leverage deep metric learning by architecting:

i) a Siamese network trained with contrastive loss, 

ii) a Triplet network trained with triplet margin loss, and 

iii)  a Triplet network trained with circle loss. 

▪ Based on our preliminary experiments, the embeddings learned by i and iii provide 

sub-par results for compound classification, hence we use ii.
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ABLATION STUDY
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ABLATION STUDY
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ABLATION STUDY
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POTENTIAL FUTURE WORK

1. Computing multiparameter persistent homology using computationally cheap 

Clique Complex filtrations instead of Vietoris-Rips complexes.

2. Testing the performance of ToDD on ultra-large Virtual Screening datasets with 

millions of compounds such as MUV, DUD-E and custom datasets of Novartis.

3. Using transfer learning to adapt state-of-the-art convolutional and transformer 

based computer vision models to extract complex chemical properties of 

compounds, specifically for few-shot learning problems. 

4. There are other subdomains in chemistry that ToDD can be benchmarked and 

tested such as: property and activity prediction in addition to affinity of binding.


