

School of Computing

Seanie Lee^{1*}, Bruno Andreis^{1*}, Kenji Kawaguchi², Juho Lee^{1,3}, Sung Ju Hwang¹ *: Equal Contribution, ¹ KAIST, ² NUS, ³ AITRICS

Summary

Motivation

- Most of existing Meta-Learning methods requires a large **amount of** meta-training tasks.
- Data augmentations require domain-specific knowledge to design task augmentations.
- Manifold Mixup is **not effective** for non-image domain.

Contributions

- We propose **Meta-Interpolation**, utilizing **set function** to interpolate two tasks for augmentation.
- We **theoretically analyze** our model and show that it regularizes the meta-learner for **better generalization**.
- Meta-Interpolation significantly improves the performance of Prototypical Network on various **domains** for few-task meta-learning problem.

Background

Problem Statement

• Given a finite tasks $\{\mathcal{T}_t\}_{t=1}^T$, where each task consists of a support set $\mathcal{D}_t^s = \{(x_{t,i}^s, y_{t,i}^s)\}_{i=1}^{N_s}$ and query set

 $\mathcal{D}_{t}^{S} = \left\{ \left(x_{t,i}^{q}, y_{t,i}^{q} \right) \right\}_{i=1}^{N_{q}} .$

- Given a predictive model, $f_{\theta,\lambda}$, we want to estimate the parameters such that it generalizes to unseen query set \mathcal{D}^q_* using a support set \mathcal{D}^s_*
- We focus on few-task meta-learning problem, where Tis small.

Metric-based Meta-Learning

• We focus on metric-based meta-learning, Prototypical Network.

$$\mathbf{c}_{k} \coloneqq \frac{1}{N_{k}} \sum_{\substack{(\mathbf{x}_{t,i}^{s}, y_{t,i}^{s}) \in \mathcal{D}_{t}^{s} \\ y_{t,i} = k}} \hat{f}_{\theta,\lambda}(\mathbf{x}_{t,i}^{s}) \in \mathbb{R}^{D}$$

 $\mathcal{L}_{\text{singleton}}\left(\lambda,\theta;\mathcal{T}_{t}\right) \coloneqq \sum_{i,k} \mathbb{1}_{\{y_{t,i}=k\}} \cdot \log \frac{\exp(-d(f_{\theta,\lambda}(\mathbf{x}_{t,i}^{q}), \mathbf{c}_{k}))}{\sum_{k'} \exp(-d(\hat{f}_{\theta,\lambda}(\mathbf{x}_{t,i}^{q}), \mathbf{c}_{k'}))}$

$$y^q_* = rgmin_k d(\hat{f}_{ heta,\lambda}(\mathbf{x}^q_*), \mathbf{c}_k)$$

Set-based Meta-Interpolation for Few-Tasks Meta-Learning

Proposed Method: Meta-Interpolation

Task Interpolation

• We sample two tasks $\mathcal{T}_{t_1} = \{\mathcal{D}_{t_1}^s, \mathcal{D}_{t_1}^q\}, \ \mathcal{T}_{t_2} = \{\mathcal{D}_{t_2}^s, \mathcal{D}_{t_2}^q\}, \ we$ **interpolate the two tasks** with Set Transformer, φ_{λ} : $\mathbb{R}^{n \times d} \to \mathbb{R}^{d}$.

For support set, we sample two permutations σ_{t_1} , σ_{t_2} on [K] and pair two instances from class $\sigma_{t_1}(k)$ and $\sigma_{t_2}(k)$, and interpolate heir hidden representations with φ_{λ} for each $k \in [K]$.

Nith the interpolated support set, we get class prototype \hat{c}_k .

For query set, we do not interpolate them. Instead, we measure a distance between the $x_{t_1,i}^q$ with $y_{t_1,i}^q = \sigma_{t_1}(k)$ and the interpolated prototype \hat{c}_k

Bilevel Optimization

• We consider the parameter of Set Transformer λ as

hyperparameter.

• We use Implicit Function Theorem (Lorraine et al., 2020) to solve the bilevel optimization problem.

$$\lambda^* \coloneqq \underset{\lambda}{\operatorname{arg\,min}} \frac{1}{T'} \sum_{t=1}^{T'} \mathcal{L}_{\operatorname{singleton}}(\lambda, \theta^*(\lambda); \mathcal{T}_t^{\operatorname{val}})$$
$$(\lambda) \coloneqq \underset{\theta}{\operatorname{arg\,min}} \frac{1}{2T} \sum_{t=1}^{T} \mathcal{L}_{\operatorname{singleton}}(\lambda, \theta; \mathcal{T}_t^{\operatorname{train}}) + \mathcal{L}_{\operatorname{mix}}(\lambda, \theta; \hat{\mathcal{T}}_t)$$

Μ Pro

SSO1.5 Train 1.0

Theoretical Analysis

Implicit Regularization by Task Interpolation

- The loss with task interpolation is **approximation** of the original loss with **regularization**.
- In simple **logistic regression**, task interpolation induces
 - data-dependent regularization, which reduces
 - Rademachar complexity.

Experimental Results

Table 1: Average accuracy of 5 runs and $\pm 95\%$ confidence interval for few shot classification on non-image domains - Tox21, NCI, GLUE-SciTail dataset, and ESC-50 datasets. ST stands for Set Transformer

	Chemical			Text	Speech
	Metabolism	Tox21	NCI	GLUE-SciTail	ESC-50
ethod	5-shot	5-shot	5-shot	4-shot	5-shot
otoNet	$63.62 \pm 0.56\%$	$64.07 \pm 0.80\%$	$80.45 \pm 0.48\%$	$72.59 \pm 0.45\%$	$69.05 \pm 1.48\%$
etaReg	$66.22 \pm 0.99\%$	$64.40 \pm 0.65\%$	$80.94 \pm 0.34\%$	$72.08 \pm 1.33\%$	$74.95 \pm 1.78\%$
etaMix	$68.02 \pm 1.57\%$	$65.23 \pm 0.56\%$	$79.46 \pm 0.38\%$	$72.12 \pm 1.04\%$	$71.99 \pm 1.41\%$
LTI	$65.44 \pm 1.14\%$	$64.16 \pm 0.23\%$	$81.12 \pm 0.70\%$	$71.65 \pm 0.70\%$	$70.62 \pm 1.96\%$
otoNet+ST	$66.26 \pm 0.65\%$	$64.98 \pm 1.25\%$	$81.20 \pm 0.30\%$	$72.37 \pm 0.56\%$	$71.54 \pm 1.56\%$
eta-Interpolation	$\textbf{72.92} \pm 1.89\%$	$67.54 \pm 0.40\%$	$82.86 \pm 0.26\%$	$\textbf{73.64} \pm 0.59\%$	$\textbf{79.22} \pm 0.84\%$

Table 2: Average accuracy of 5 runs and $\pm 95\%$ confidence interval for few shot classification on image domains - Rainbow MNIST, Mini-ImageNet, and CIFAR100. ST stands for Set Transformer.

,	U ,				
	RMNIST	Mini-ImageNet-S		CIFAR-100-FS	
lethod	1-shot	1-shot	5-shot	1-shot	5-shot
rotoNet	$75.35 \pm 1.43\%$	$39.14 \pm 0.78\%$	$51.17 \pm 0.57\%$	$38.05 \pm 1.56\%$	$52.63 \pm 0.74\%$
letaReg	$76.40 \pm 0.56\%$	$39.36 \pm 0.45\%$	$50.94 \pm 0.67\%$	$37.74 \pm 0.70\%$	$52.73 \pm 1.26\%$
letaMix	$76.54 \pm 0.72\%$	$38.25 \pm 0.09\%$	$52.38 \pm 0.52\%$	$36.13 \pm 0.63\%$	$52.52 \pm 0.89\%$
ILTI	$79.40 \pm 0.75\%$	$39.69 \pm 0.47\%$	$52.73 \pm 0.51\%$	$38.81 \pm 0.55\%$	$53.41 \pm 0.83\%$
rotoNet+ST	$77.38 \pm 2.05\%$	$38.93 \pm 1.03\%$	$48.92 \pm 0.67\%$	$38.03 \pm 0.85\%$	$50.72 \pm 0.92\%$
Ieta Interpolation	$83.24 \pm 1.39\%$	$\textbf{40.28} \pm 0.48\%$	$\textbf{53.06} \pm 0.33\%$	$\textbf{41.48} \pm 0.45\%$	$\textbf{54.94} \pm 0.80\%$

