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Motivation Example –
Market Share Expansion for Loans by Incentives and Discounts

We provide numerical experiments on partially simulated data
(based on the UCI Default of Credit Cards dataset)
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Contextual Bandits with Knapsacks (CBwK)

Generally speaking, CBwK can be described as following:

→ Various settings and algorithms based on how rt and ct are generated

For rounds t = 1, 2, 3, . . . ,T :

1 Context xt ∼ ν is drawn independently of the past

2 Learner observes xt and picks action at ∈ A (finite set)

3 Learner obtains scalar reward rt and suffers vector costs ct
(and only gets rt and ct as feedback)

Goals: Maximize
∑
t6T

rt while ensuring
∑
t6T

ct 6 B1
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Existing settings and algorithms for CBwK

Setting #1
Badanidiyuru et al. [2014] and Agrawal et al. [2016]

I.i.d. generation of
(
xt ,
(
r(a)

)
a∈A,

(
c(a)

)
a∈A

)
Finite set Π of benchmark policies

Setting #2
Agrawal and Devanur [2016]
I.i.d. contexts xt ∼ ν and linear structural assumptions:

E
[
rt(a)

∣∣ xt & past
]

= µT? xt(a) and E
[
ct(a)

∣∣ xt & past
]

= W T
? xt(a)

In both cases
Regret w.r.t. some optimal static policy OPT

(based on Π or the linear assumption)
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Setting #3: with conversion model

For rounds t = 1, 2, 3, . . . ,T :

1 Context xt ∼ ν is drawn independently of the past

2 Learner observes xt and picks action at ∈ A
3 Conversion yt ∈ {0, 1} drawn ∼ Ber

(
η(ϕ(at , xt)T θ?)

)
Learner observes yt , gets r(at , xt) yt and suffers c(at , xt) yt

where η(x) = 1/(1 + e−x ), and where r and c are known functions

Goals: Maximize
∑
t6T

r(at , xt) yt while ensuring
∑
t6T

c(at , xt) yt 6 B 1

Contrib. #1: Protocol coupling rewards and costs through conversions
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Regret definition

Short-hand notation P(a, x) = η(ϕ(a, x)T θ?)

Regret is (as well) w.r.t. some optimal static policy based:

OPT (ν,P,B) = max
π:X→P(A)

T EX∼ν

[∑
a∈A

r(a,X)P(a,X)πa(X)

]

under T EX∼ν

[∑
a∈A

c(a,X)P(a,X)πa(X)

]
6 B 1

Reward goal: Minimize OPT (ν,P,B)−
∑
t6T

r(at , xt) yt
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New policy

1 If budget constraints violated, play no-op anull

2 Otherwise,

Compute high-proba. upper bound Ut−1(a, x) on P(a, x)
MLE + projection, adapted from Faury et al. [2020]

Compute policy, i.e., mapping X → P(A):

pt = argmax
π:X→P(A)

T EX∼ν̂t

[∑
a∈A

r(a,X)Ut−1(a,X)πa(X)

]

under T EX∼ν̂t

[∑
a∈A

c(a,X)Ut−1(a,X)πa(X)

]
6 BT 1

Based on context xt , draw action at ∼ pt(xt)

→ Contrib. #2: Algorithm based on primal formulation
(Compare to the dual formulation of, e.g., Agrawal and Devanur [2016])
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Performance

Regret bound:

OPT (ν,P,B)−
∑
t6T

r(at , xt) yt = Õ
((

1 + OPT (ν,P,B)/B
)√

T
)

Orders in magnitude in T comparable to other CBwK regret bounds
(Badanidiyuru et al. [2014] and Agrawal and Devanur [2016])

Summary of key restrictions and assumptions:
– Setting #1: Finite set Π of benchmark policies
– Setting #2: Heavy assumption of linear structure

– Setting #3: Finite set X of contexts
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