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The Yeo-Johnson (YJ) transformation
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Optimal \, found by maximizing the log-likelihood:

n = n
log Lyv3(A) = -5 log(a?l,()\,{%})) +(A=-1) ngn(wi) log(|z;| +1) — 5 log(27)
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Brent minimization method




The Yeo-Johnson transformation: effect on survival models using TCGA gene ex-
pression raw counts
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Cross-Silo Federated Learning

-> Datasets remain on each server

- Each server train their own local model, and a central
server, aggregates at regular steps all the models

- Assumes that the loss is separable

- Challenges:

- heterogeneity: ensure pooled-equivalence
irrespective of data partition

- Confidentiality: Secure Multi-party computation




Research question

In cross-silo FL, as YJ log-likelihood is not separable, can we apply the Yeo-Johnson transformation:

- and obtain a result identical to the case where all the data is pooled in the same server? (heterogeneity)
- without leaking any information on the data from each center? (confidentiality)
- using an algorithm that can be realistically applied in real-world FL project? (communication efficiency)



First theoretical contribution: the negative log-likelihood is Convex

Proposition 3.1: The negative log-likelihood A — —log Lv3(\) is strictly convex
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ExpYJ: using an exponential search computing only the sign of the derivative of the
negative log-likelihood
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Exponential search:
1. Find an upper and lower bound
2. Perform a binary search
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More stable than Brent minimization method
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SecureFedYJ: Secure Multiparty Computation (SMC) + expYJ
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Summary of contributions

e First proof that the YJ negative log-likelihood is convex

e expYJ, optimizing YJ using exponential search
o as accurate as SOTA YJ method...
o ...and even more stable !

e secureFedYJ
o pooled-equivalent, and therefore resilient to heterogeneity
o does not leak any further information than the final YJ parameters
o can be realistically used in a real-world FL project
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