



# Fixed-distance Hamiltonian Monte Carlo

### Hadi Mohasel Afshar, Sally Cripps

CSIRO's Data61 & The University of Sydney

## Markov Chain Monte Carlo (MCMC)

 MCMC are a class methods that approximate a probability distribution with a set of states a.k.a. samples.





## Markov Chain Monte Carlo (MCMC)

- MCMC are a class methods that approximate a probability distribution with a set of states a.k.a. samples.
- Sampling is unbiased if #draws from each region is proportional to the probability mass of that region.





## Markov Chain Monte Carlo (MCMC)

- MCMC are a class methods that approximate a probability distribution with a set of states a.k.a. samples.
- Sampling is unbiased if #draws from each region is proportional to the probability mass of that region.
- The state of the art MCMC methods (e.g. NUTS) are variations of the Hamiltonian Monte Carlo (HMC)





• In HMC, the potential energy is defined as the -log of PDF.

Target probability density:  $\pi(q)$ 



• In HMC, the potential energy is defined as the -log of the PDF.

Target probability density:  $\pi(q)$ 



Potential energy:  $U(q) = -\log \pi(q)$ 



- In HMC, the potential energy is defined as the neg. log of the PDF.
- An auxiliary momentum p ~ N(0, I) is assigned to the current state. Then, it is evolved via the simulation of the equations of motion for a fixed time.



- In HMC, the potential energy is defined as the neg. log of PDF.
- An auxiliary momentum p ~ N(0, I) is assigned to the current state. Then, it is evolved via the simulation of the equations of motion for a fixed time.
- If the simulation is precise, the acceptance probability of the resulting proposal is high.



#### Note: In high potential (i.e. low probability) regions the velocity is low



### More states are generated from these regions...



#### Conversely, less time is spent in the high-probability regions



## **Evolution bias**

• As such, there is bias towards proposing low-probability states which is counter-intuitive!



Consider a potential energy function:



Consider a potential energy function:



Consider a potential energy function:

We let the current state be a on the unit circle

We fix the momentum magnitude but randomly choose its direction



Consider a potential energy function:

We let the current state be a on the unit circle

We fix the momentum magnitude but randomly choose its direction

... and plot the proposals:







### Then, what makes the total HMC sampling unbiased?



## Then, what makes the total HMC sampling unbiased?

-4 -2 0



The momentum distribution...

#### Previous example with different momentum magnitudes...



#### Previous example with different momentum magnitudes...

The transition from a low to high probability region is always possible





#### Previous example with different momentum magnitudes...

But if the momentum's magnitude is low, the transition from a high to low probability region may NOT be possible.











The Picture is downloaded from pixabay.com



The Picture is downloaded from pixabay.com

## Resolving the first bias

# of Fixed distance (rather than fixed-time) evolution



The Picture is downloaded from pixabay.com

### Fixed-distance simulation of the equations of motion



### Fixed-distance simulation of the equations of motion



Even though more time is spent in low-probability regions, more distance is not traversed there

To resolve the second bias...



## We prove...



HMC's momentum distribution



## FDHMC's momentum distribution



## FDHMC's momentum distribution

The expected magnitude of FDHMC's momentum vector is higher



## FDHMC's momentum distribution

The expected magnitude of FDHMC's momentum vector is higher.

This translates to higher ESS and better exploration of target probability modes.



## Conclusion

• With negligible computational overhead, we resolved two counter-balancing biases that exist in the core of HMC algorithms.

## Conclusion

- With negligible computational overhead, we resolved two counter-balancing biases that exist in the core of HMC algorithms.
- Our experiments show that the resulting FDHMC has a higher ESS/grad.