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What is Safe Multi-agent Coverage Control?

• Density
– Spatially distributed events

• Multiple agents
– A set of agents coordinate in the

process
• Coverage Control

– Agents navigate to cover the space
"as best as they can"

• Safe
– Constraints by the environment

– Safe execution

Real-world applications: Bio-diversity monitoring, Swarm robots, 3D scene reconstruction, etc.
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Problem definition
Coverage function:

F (X; ρ)︸ ︷︷ ︸
coverage

=
∑

xi∈X︸︷︷︸
agents’ location

∑
v∈Di−︸ ︷︷ ︸

disc of agent i

ρ(v)︸︷︷︸
density

Goal: max
Xt

F (Xt; ρ) s.t. q(Xt) ≥ 0︸ ︷︷ ︸
constraint

∀t

Challenges
• A-priori unknown density
• A-priori unknown constraints
• Even with known functions → NP Hard problem

Submodular function → Greedy is Near-Optimal,

F (Xt; ρ)︸ ︷︷ ︸
Our goal

≥ (1 − 1
e

) F (X⋆; ρ)︸ ︷︷ ︸
optimal clairvoyant

− ϵρ

Algorithmic questions
• Can we always satisfy safety constraints?
• Do we converge? How quickly?
• How far are we from the optimal solution?
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MaCOpt: Multi-agent Coverage Control
Unconstrained case

MaCOpt steps: 1) Greedy UCB 2) Uncertainty sampling

Domain V

ρ(
v)

Theoretical result: Cumulative regret grows sublinear with time
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SafeMaC: Safe Multi-Agent Coverage Control
Multi-Agent extension of Goal-oriented Safe Exploration (GoOSE) (Turchetta et al., 2019)

Theoretical Results:
• Guarantees that SafeMaC is safe with high probability
• Achieves near-optimal coverage in finite time
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Conclusion

Experiments on biodiversity monitoring and obstacle avoidance environments

• MaCOpt up to 40% more coverage as compared to UCB
• SafeMaC up to 50% more sample efficient as compared to two-stage algorithm

If you are interested in:

• Multi-agent learning
• Submodular optimization

• Safety
• Bayesian optimization

See you at our poster @NeurIPS 2022 !!!

Thank you for your attention !!! Scan for paper !!!
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