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What is Safe Multi-agent Coverage Control?

® Density
— Spatially distributed events
* Multiple agents

— A set of agents coordinate in the
process

® Coverage Control

— Agents navigate to cover the space
"as best as they can"

e Safe

— Constraints by the environment
— Safe execution

Real-world applications: Bio-diversity monitoring, Swarm robots, 3D scene reconstruction, etc.
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Algorithmic questions
® Can we always satisfy safety constraints?
® Do we converge? How quickly?

® How far are we from the optimal solution?
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MaCOrT: Multi-agent Coverage Control
Unconstrained case

MACOPT steps: 1) GREEDY UCB 2) Uncertainty sampling

Domain V

Theoretical result: Cumulative regret grows sublinear with time
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SareMaC: Safe Multi-Agent Coverage Control
Multi-Agent extension of Goal-oriented Safe Exploration (GoOSE) (Turchetta et al., 2019)

Theoretical Results:
¢ Guarantees that SAFEMAC is safe with high probability
¢ Achieves near-optimal coverage in finite time

ETHziirich ETH Al CENTER NeurlPS 2022 4/5



Conclusion

Experiments on biodiversity monitoring and obstacle avoidance environments

ETHziirich ETH AI CENTER NeurlPS 2022  5/5



Conclusion

Experiments on biodiversity monitoring and obstacle avoidance environments
e MACOPT up to 40% more coverage as compared to UCB
e SAFEMAC up to 50% more sample efficient as compared to two-stage algorithm

ETHziirich ETH AI CENTER NeurlPS 2022  5/5



Conclusion

Experiments on biodiversity monitoring and obstacle avoidance environments
e MACOPT up to 40% more coverage as compared to UCB
e SAFEMAC up to 50% more sample efficient as compared to two-stage algorithm

If you are interested in: E E
u

* Multi-agent learning ® Safety .
® Submodular optimization ® Bayesian optimization
See you at our poster @NeurlPS 2022 !!! E -

Scan for paper !l!

ETHziirich ETH Al CENTER NeurlPS 2022  5/5



Conclusion

Experiments on biodiversity monitoring and obstacle avoidance environments
e MACOPT up to 40% more coverage as compared to UCB
e SAFEMAC up to 50% more sample efficient as compared to two-stage algorithm

If you are interested in: E E
u

* Multi-agent learning ® Safety .
® Submodular optimization ® Bayesian optimization
See you at our poster @NeurlPS 2022 !!! E -

Thank you for your attention !!!

Scan for paper !l!
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