
Non-Gaussian Tensor Programs

NeurIPS’2022

Eugene Golikov∗ Greg Yang†

∗ École Polytechnique Fédérale de Lausanne, Switzerland
† Microsoft research, USA



Recall the limit theorems in probability theory:

1. Law of Large Numbers:
An average of n iid random variables converges to their mean as n→∞.

2. Central Limit Theorem:
An average of n iid zero-mean random variables scaled by

√
n converges to a zero-mean

Gaussian as n→∞.

Both state universality: the limits do not depend on the distribution of random variables albeit

several first moments.

1



A universality principle for neural networks?

Conjecture

As width tends to infinity, two different iid random initializations induce identical training

behavior as long as they sample weights with the same mean and variance.

2



When the above principle works:

f (ξ) =
1

n
V⊤ϕ(g(ξ)), g(ξ) = Wϕ(Uξ), ξ ∈ R, U,V ∈ Rn, W ∈ Rn×n.

Consider two alternatives (G) and (R) for sampling W :

(R) Wαβ ∼ Unif([−
√
3/n,

√
3/n]) or (G) Wαβ ∼ N (0, 1/n).

The distribution of gα(ξ) tends to the same Gaussian by CLT for both (R) and (G)!

3



When the above principle fails:

f (ξ) =
1

n
U⊤ϕ(Uξ), ξ ∈ R, U ∈ Rn.

Consider two alternatives (G) and (R) for sampling U:

(R) Uα = ±1 with prob. 1/2 or (G) Uα ∼ N (0, 1).

Suppose ϕ(x) = x1[− 1
2 ,

1
2 ]
(x). Then

f (1) = 0 with init (R) but f (1)→ E zzϕ(z) > 0 with init (G)

as n→∞, where z ∼ N (0, 1).

Take-away: Universality fails for vector-shaped weights.

4



Universality also fails for scalar-shaped weights:

f (ξ) = b +
1

n
U⊤ϕ(Uξ), ξ ∈ R, b ∈ R, U ∈ Rn.

The distribution of f (ξ) depends on the distribution of b.

Conjecture

As width tends to infinity, two different iid random initializations induce identical training

behavior as long as

1. They sample scalar-shaped and vector-shaped weights the same way , and

2. They sample matrix-shaped weights with the same mean and variance .

5



Universality also fails for scalar-shaped weights:

f (ξ) = b +
1

n
U⊤ϕ(Uξ), ξ ∈ R, b ∈ R, U ∈ Rn.

The distribution of f (ξ) depends on the distribution of b.

Conjecture

As width tends to infinity, two different iid random initializations induce identical training

behavior as long as

1. They sample scalar-shaped and vector-shaped weights the same way , and

2. They sample matrix-shaped weights with the same mean and variance .

5



Definition ([Yang et al., 2022])
Let P be a parameter tensor in a neural network of any architecture. As width becomes large,

• if P’s size remains constant, then we say P is scalar-like;

• if exactly one dimension of P becomes large, we say P is vector-like;

• if exactly two dimensions of P becomes large, we say P is matrix-like.

6



Definition ([Yang et al., 2022])
Let P be a parameter tensor in a neural network of any architecture. As width becomes large,

• if P’s size remains constant, then we say P is scalar-like;

• if exactly one dimension of P becomes large, we say P is vector-like;

• if exactly two dimensions of P becomes large, we say P is matrix-like.

6



Definition ([Yang et al., 2022])
Let P be a parameter tensor in a neural network of any architecture. As width becomes large,

• if P’s size remains constant, then we say P is scalar-like;

• if exactly one dimension of P becomes large, we say P is vector-like;

• if exactly two dimensions of P becomes large, we say P is matrix-like.

6



Principle (Universality in General Neural Network Initialization)

As width becomes large, two different iid random initializations of a neural network of any

architecture induce identical training behavior as long as

1. They sample scalar- and vector-like weights the same way , and

2. They sample matrix-like weights with the same mean and variance .

It is a corollary of a universality principle for tensor programs.

7



We are given:

• L matrices A1, . . . ,AL ∈ Rn×n;

• M0 initial vectors g1, . . . , gM0 ∈ Rn;

• M0 initial scalars c1, . . . , cM0 ∈ R.

A tensor program generates new vectors and scalars iteratively:

g i
α ←

n∑
β=1

W i
αβx

i
β , c i ← 1

n

n∑
β=1

x iβ , where x iα = ϕi (g1
α, . . . , g

i−1
α ; c1, . . . , c i−1), (1)

and

• ϕi is a scalar function;

• W i = Aj or W i = Aj⊤ for some j ∈ [L].

8



We are given:

• L matrices A1, . . . ,AL ∈ Rn×n;

• M0 initial vectors g1, . . . , gM0 ∈ Rn;

• M0 initial scalars c1, . . . , cM0 ∈ R.

A tensor program generates new vectors and scalars iteratively:

g i
α ←

n∑
β=1

W i
αβx

i
β , c i ← 1

n

n∑
β=1

x iβ , where x iα = ϕi (g1
α, . . . , g

i−1
α ; c1, . . . , c i−1), (1)

and

• ϕi is a scalar function;

• W i = Aj or W i = Aj⊤ for some j ∈ [L].

8



We are given:

• L matrices A1, . . . ,AL ∈ Rn×n;

• M0 initial vectors g1, . . . , gM0 ∈ Rn;

• M0 initial scalars c1, . . . , cM0 ∈ R.

A tensor program generates new vectors and scalars iteratively:

g i
α ←

n∑
β=1

W i
αβx

i
β , c i ← 1

n

n∑
β=1

x iβ , where x iα = ϕi (g1
α, . . . , g

i−1
α ; c1, . . . , c i−1), (1)

and

• ϕi is a scalar function;

• W i = Aj or W i = Aj⊤ for some j ∈ [L].

8



We are given:

• L matrices A1, . . . ,AL ∈ Rn×n;

• M0 initial vectors g1, . . . , gM0 ∈ Rn;

• M0 initial scalars c1, . . . , cM0 ∈ R.

A tensor program generates new vectors and scalars iteratively:

g i
α ←

n∑
β=1

W i
αβx

i
β , c i ← 1

n

n∑
β=1

x iβ , where x iα = ϕi (g1
α, . . . , g

i−1
α ; c1, . . . , c i−1), (1)

and

• ϕi is a scalar function;

• W i = Aj or W i = Aj⊤ for some j ∈ [L].

8



Tensor programs can express

1. A forward pass for a neural network of any architecture [Yang, 2019];

2. A backward pass for a neural network of any architecture [Yang, 2020a];

3. Any number of gradient descent steps [Yang and Littwin, 2021, Yang and Hu, 2021]:

Proposition

Let the network have k outputs. For each t and input ξ, the network output after t GD steps

ft(ξ) can be expressed as a set of k scalars c in some tensor program.

Conjecture (Universality for tensor programs)

Scalars c1, . . . , cM in a tensor program converge and their limits depend only on mean and

variance of the distribution of entries of A1, . . . ,AL.

9



Tensor programs can express

1. A forward pass for a neural network of any architecture [Yang, 2019];

2. A backward pass for a neural network of any architecture [Yang, 2020a];

3. Any number of gradient descent steps [Yang and Littwin, 2021, Yang and Hu, 2021]:

Proposition

Let the network have k outputs. For each t and input ξ, the network output after t GD steps

ft(ξ) can be expressed as a set of k scalars c in some tensor program.

Conjecture (Universality for tensor programs)

Scalars c1, . . . , cM in a tensor program converge and their limits depend only on mean and

variance of the distribution of entries of A1, . . . ,AL.

9



Tensor programs can express

1. A forward pass for a neural network of any architecture [Yang, 2019];

2. A backward pass for a neural network of any architecture [Yang, 2020a];

3. Any number of gradient descent steps [Yang and Littwin, 2021, Yang and Hu, 2021]:

Proposition

Let the network have k outputs. For each t and input ξ, the network output after t GD steps

ft(ξ) can be expressed as a set of k scalars c in some tensor program.

Conjecture (Universality for tensor programs)

Scalars c1, . . . , cM in a tensor program converge and their limits depend only on mean and

variance of the distribution of entries of A1, . . . ,AL.

9



Tensor programs can express

1. A forward pass for a neural network of any architecture [Yang, 2019];

2. A backward pass for a neural network of any architecture [Yang, 2020a];

3. Any number of gradient descent steps [Yang and Littwin, 2021, Yang and Hu, 2021]:

Proposition

Let the network have k outputs. For each t and input ξ, the network output after t GD steps

ft(ξ) can be expressed as a set of k scalars c in some tensor program.

Conjecture (Universality for tensor programs)

Scalars c1, . . . , cM in a tensor program converge and their limits depend only on mean and

variance of the distribution of entries of A1, . . . ,AL.

9



Tensor programs can express

1. A forward pass for a neural network of any architecture [Yang, 2019];

2. A backward pass for a neural network of any architecture [Yang, 2020a];

3. Any number of gradient descent steps [Yang and Littwin, 2021, Yang and Hu, 2021]:

Proposition

Let the network have k outputs. For each t and input ξ, the network output after t GD steps

ft(ξ) can be expressed as a set of k scalars c in some tensor program.

Conjecture (Universality for tensor programs)

Scalars c1, . . . , cM in a tensor program converge and their limits depend only on mean and

variance of the distribution of entries of A1, . . . ,AL.

9



Theorem (Gaussian Master Theorem, [Yang, 2020b])
Consider a Tensor Program with M vectors g1, . . . , gM ∈ Rn and scalars c1, . . . , cM . Suppose

1. All initial vectors g1, . . . , gM0 have iid entries from N (0, 1);

2. All matrices Ai have iid entries from N (0, n−1);

3. All the nonlinearities ϕi are pseudo-Lipschitz1;

4. All initial scalars c1, . . . , cM0 have almost sure limits as n→∞.

Then, as n→∞, for any i ∈ [M],

c i
a.s.−→ c̊ i , (2)

where c̊ i is a deterministic scalar given by a certain recurrent formula.

1A function f : Rn → Rm is called pseudo-Lipschitz if there exist C , d > 0 such that for any x , y ∈ Rn,

∥f (x)− f (y)∥ ≤ C∥x − y∥(1 + ∥x∥d + ∥y∥d ).

10



Theorem (Gaussian Master Theorem, [Yang, 2020b])
Consider a Tensor Program with M vectors g1, . . . , gM ∈ Rn and scalars c1, . . . , cM . Suppose

1. All initial vectors g1, . . . , gM0 have iid entries from N (0, 1);

2. All matrices Ai have iid entries from N (0, n−1);

3. All the nonlinearities ϕi are pseudo-Lipschitz1;

4. All initial scalars c1, . . . , cM0 have almost sure limits as n→∞.

Then, as n→∞, for any i ∈ [M],

c i
a.s.−→ c̊ i , (2)

where c̊ i is a deterministic scalar given by a certain recurrent formula.

1A function f : Rn → Rm is called pseudo-Lipschitz if there exist C , d > 0 such that for any x , y ∈ Rn,

∥f (x)− f (y)∥ ≤ C∥x − y∥(1 + ∥x∥d + ∥y∥d ).

10



Theorem (Gaussian Master Theorem, [Yang, 2020b])
Consider a Tensor Program with M vectors g1, . . . , gM ∈ Rn and scalars c1, . . . , cM . Suppose

1. All initial vectors g1, . . . , gM0 have iid entries from N (0, 1);

2. All matrices Ai have iid entries from N (0, n−1);

3. All the nonlinearities ϕi are pseudo-Lipschitz1;

4. All initial scalars c1, . . . , cM0 have almost sure limits as n→∞.

Then, as n→∞, for any i ∈ [M],

c i
a.s.−→ c̊ i , (2)

where c̊ i is a deterministic scalar given by a certain recurrent formula.

1A function f : Rn → Rm is called pseudo-Lipschitz if there exist C , d > 0 such that for any x , y ∈ Rn,

∥f (x)− f (y)∥ ≤ C∥x − y∥(1 + ∥x∥d + ∥y∥d ).

10



Theorem (Gaussian Master Theorem, [Yang, 2020b])
Consider a Tensor Program with M vectors g1, . . . , gM ∈ Rn and scalars c1, . . . , cM . Suppose

1. All initial vectors g1, . . . , gM0 have iid entries from N (0, 1);

2. All matrices Ai have iid entries from N (0, n−1);

3. All the nonlinearities ϕi are pseudo-Lipschitz1;

4. All initial scalars c1, . . . , cM0 have almost sure limits as n→∞.

Then, as n→∞, for any i ∈ [M],

c i
a.s.−→ c̊ i , (2)

where c̊ i is a deterministic scalar given by a certain recurrent formula.

1A function f : Rn → Rm is called pseudo-Lipschitz if there exist C , d > 0 such that for any x , y ∈ Rn,

∥f (x)− f (y)∥ ≤ C∥x − y∥(1 + ∥x∥d + ∥y∥d ).

10



Theorem (Gaussian Master Theorem, [Yang, 2020b])
Consider a Tensor Program with M vectors g1, . . . , gM ∈ Rn and scalars c1, . . . , cM . Suppose

1. All initial vectors g1, . . . , gM0 have iid entries from N (0, 1);

2. All matrices Ai have iid entries from N (0, n−1);

3. All the nonlinearities ϕi are pseudo-Lipschitz1;

4. All initial scalars c1, . . . , cM0 have almost sure limits as n→∞.

Then, as n→∞, for any i ∈ [M],

c i
a.s.−→ c̊ i , (2)

where c̊ i is a deterministic scalar given by a certain recurrent formula.

1A function f : Rn → Rm is called pseudo-Lipschitz if there exist C , d > 0 such that for any x , y ∈ Rn,

∥f (x)− f (y)∥ ≤ C∥x − y∥(1 + ∥x∥d + ∥y∥d ).

10



Theorem (Non-Gaussian Master Theorem, ours)
Consider a Tensor Program with M vectors g1, . . . , gM ∈ Rn and scalars c1, . . . , cM . Suppose

1. All initial vectors g1, . . . , gM0 have iid entries from N (0, 1);

2. All matrices Ai have iid entries with zero mean, variance n−1 , and each k-th moment

bounded by νkn
−k/2;

3. All the nonlinearities ϕi are polynomially smooth 2;

4. All initial scalars c1, . . . , cM0 have almost sure limits as n→∞ and all moments .

Then, as n→∞, for any i ∈ [M],

c i
a.s. & Lp
−−−−−−−−−→ c̊ i ∀p ∈ [1,∞) (3)

for the same c̊ i as in the Gaussian theorem.

2We call f polynomially smooth if it is smooth and each derivative of order k ≥ 0 is polynomially bounded.

11



c i
a.s. & Lp

−−−−−→ c̊ i ∀p ∈ [1,∞) (4)

for the same c i no matter if matrix weights A are Gaussian or not:

Principle (Universality in Tensor Program Sampling)

As n→∞, two different iid random samplings of a TP’s matrices and initial vectors result in

identical limits of scalars as long as

1. They sample all initial vectors and initial scalars the same way , and

2. They sample all matrix entries with the same variance and zero mean .

12



Applications of Master theorem:

1. NNGP correspondence: Each pre-activation output of a neural network converges to a

Gaussian process as width tends to infinity.3

2. Convergence to a kernel method: Under certain parameterization, SGD training

dynamics converges to the training dynamics of a kernel method as width tends to infinity.4

3. Random matrix theory: Semi-circle and Marchenko-Pastur laws.

4. Free Independence Principle: at initialization, neural network’s weights become freely

independent from its hidden representations as width goes to infinity.5

5. Hyperparameter transfer: optimal training hyperparameters can be transfered from thin

to wide nets under certain parameterization.6

3[Neal, 1995, Lee et al., 2017, Garriga-Alonso et al., 2018, Novak et al., 2018, Yang, 2019]
4[Jacot et al., 2018, Lee et al., 2019, Yang, 2020a, Yang and Littwin, 2021]
5[Yang, 2020b]
6[Yang and Hu, 2021, Yang et al., 2022]

13



Garriga-Alonso, A., Rasmussen, C. E., and Aitchison, L. (2018).

Deep convolutional networks as shallow gaussian processes.

arXiv preprint arXiv:1808.05587.

Jacot, A., Gabriel, F., and Hongler, C. (2018).

Neural tangent kernel: Convergence and generalization in neural networks.

In Advances in neural information processing systems, pages 8571–8580.

Lee, J., Bahri, Y., Novak, R., Schoenholz, S. S., Pennington, J., and Sohl-Dickstein, J.

(2017).

Deep neural networks as gaussian processes.

arXiv preprint arXiv:1711.00165.

Lee, J., Xiao, L., Schoenholz, S., Bahri, Y., Novak, R., Sohl-Dickstein, J., and Pennington,

J. (2019).

Wide neural networks of any depth evolve as linear models under gradient descent.

In Advances in neural information processing systems, pages 8572–8583.

Neal, R. M. (1995).

13



BAYESIAN LEARNING FOR NEURAL NETWORKS.

PhD thesis, University of Toronto.

Novak, R., Xiao, L., Lee, J., Bahri, Y., Yang, G., Hron, J., Abolafia, D. A., Pennington, J.,

and Sohl-Dickstein, J. (2018).

Bayesian deep convolutional networks with many channels are gaussian processes.

arXiv preprint arXiv:1810.05148.

Yang, G. (2019).

Tensor programs i: Wide feedforward or recurrent neural networks of any

architecture are gaussian processes.

arXiv preprint arXiv:1910.12478.

Yang, G. (2020a).

Tensor programs ii: Neural tangent kernel for any architecture.

arXiv preprint arXiv:2006.14548.

Yang, G. (2020b).

Tensor programs iii: Neural matrix laws.

13



arXiv preprint arXiv:2009.10685.

Yang, G. and Hu, E. J. (2021).

Tensor programs iv: Feature learning in infinite-width neural networks.

In International Conference on Machine Learning, pages 11727–11737. PMLR.

Yang, G., Hu, E. J., Babuschkin, I., Sidor, S., Liu, X., Farhi, D., Ryder, N., Pachocki, J.,

Chen, W., and Gao, J. (2022).

Tensor programs v: Tuning large neural networks via zero-shot hyperparameter

transfer.

arXiv preprint arXiv:2203.03466.

Yang, G. and Littwin, E. (2021).

Tensor programs iib: Architectural universality of neural tangent kernel training

dynamics.

In International Conference on Machine Learning, pages 11762–11772. PMLR.

13


