

CoupAlign: Coupling Word-Pixel with Sentence-Mask Alignments for Referring Image Segmentation

Zicheng Zhang^{1*} Yi Zhu^{2*} Jianzhuang Liu² Xiaodan Liang³ Wei Ke^{1†}

¹Xi'an Jiaotong University ²Noah's Ark Lab, Huawei ³Sun Yat-sen University

Background

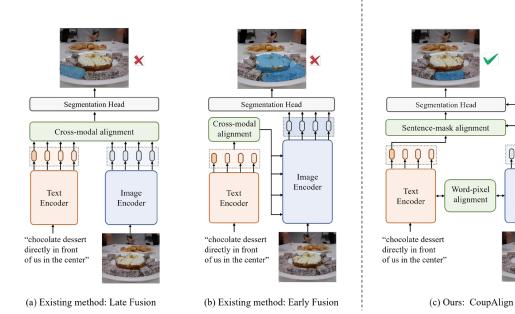
- Referring image segmentation (RIS) aims at localizing all pixels of the visual objects described by a natural language sentence.
- Main challenges:
 - how to align the given language expression with visual pixels for highlighting the target.
 - how to distinguish the target from similar objects.

Motivation

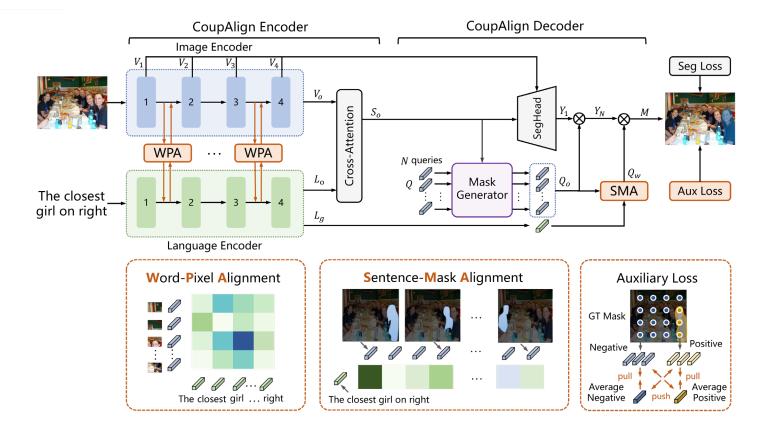
- Previous methods
 - only consider late fusion for vision and language features.
 - or consider early fusion but only have word-pixel level alignment.
- Our methods
 - adopts word-pixel level alignment in the early fusion stage.
 - and use sentence-mask level alignment to enhance the fused features in the late fusion stage.

Image

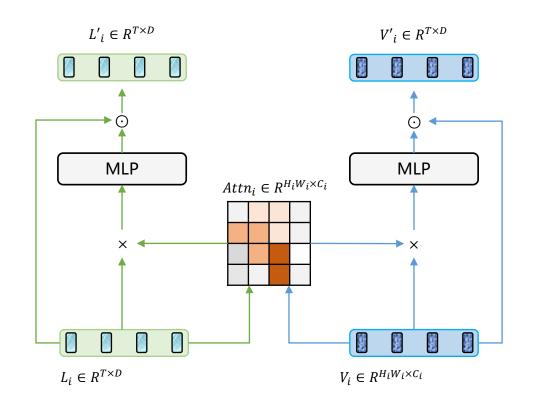
Encoder



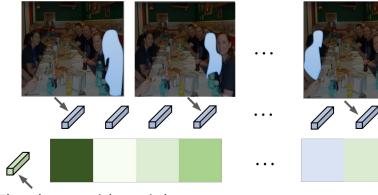
- CoupAlign Architecture
 - WPA module enables cross-model interactions at each encoder stage.
 - Based on the aligned feature S_o , the mask generator produces N mask embeddings.
 - SMA module weights Q_o using L_g and projects the mask signals back to Y_N .



- Word-Pixel Alignment
 - we use cross attention to align word tokens and pixel tokens
 - and design a gate to control the fused information flow.

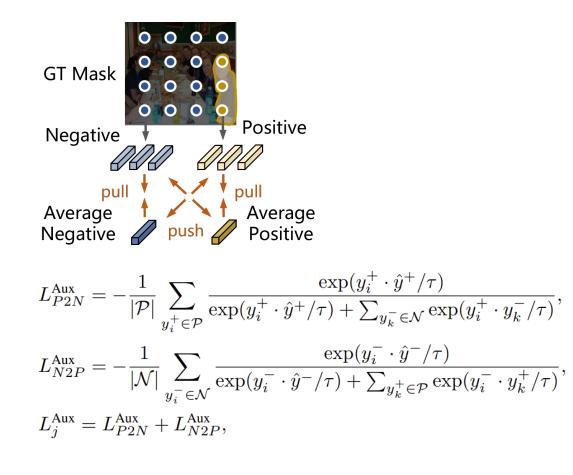


- Sentence-Mask Alignment
 - we use global language feature and mask embeddings to compute attention weights.
 - Then we use the weights to aggregate the proposals to the final mask prediction.



The closest girl on right

- Auxiliary loss
 - We adopt contrastive loss to enhance the ability of distinguishing the object from the background.



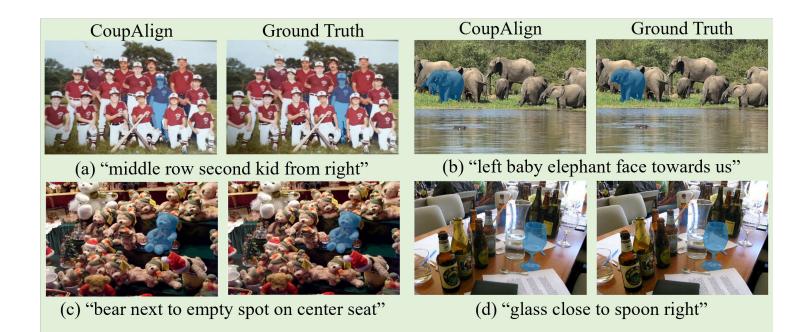
Result

- Comparing with SOTA
 - We evaluate our method on four referring image segmentation datatset and outperform previous method.

	Backbone	RefCOCO			RefCOCO+			G-Ref		ReferIt
		val	test A	test B	val	testA	testB	val (U)	test (U)	test
MCN [31]	Darknet-53	62.44	64.20	59.71	50.62	54.99	44.69	49.22	49.40	-
BRINet [12]	ResNet-101	60.98	62.99	59.21	48.17	52.32	42.11	-	-	63.46
CMPC [13]	ResNet-101	61.36	64.53	59.64	49.56	53.44	43.23	-	-	65.53
LSCM [14]	ResNet-101	61.47	64.99	59.55	49.34	53.12	43.50	-	-	66.57
CGAN [30]	ResNet-101	64.86	68.04	62.07	51.03	55.51	44.06	51.01	51.69	-
BUSNet [43]	ResNet-101	63.27	66.41	61.39	51.76	56.87	44.13	-	-	-
EFN [11]	ResNet-101	62.76	65.69	59.67	51.50	55.24	43.01	-	-	66.70
LTS [16]	DarkNet-53	65.43	67.76	63.08	54.21	58.32	48.02	54.40	54.25	-
VLT [7]	DarkNet-53	65.65	68.29	62.73	55.50	59.20	49.36	52.99	56.65	-
ReSTR [19]	ViT-B-16	67.22	69.30	64.45	55.78	60.44	48.27	54.48	-	70.18
CRIS [41]	ResNet-101	70.47	73.18	66.10	62.27	68.08	53.68	59.87	60.36	-
LAVT [44]	Swin-B	72.73	75.82	68.79	62.14	68.38	55.10	61.24	62.09	-
CoupAlign (ours)	Swin-B	74.70	77.76	70.58	62.92	68.34	56.69	62.84	62.22	73.28

Visualization

- Visualization
 - CoupAlign works well in the scenes where crowded objects have similar color and context.



Conclusion

- Conclusion
 - CoupAlign captures both visual and semantic coherence of pixels within the referred object, and significantly outperforms state-of-the-art RIS methods.
 - Especially, CoupAlign has great ability in localizing the target from similar objects, showing great potential in segmenting natural language referred objects in real-world scenarios.

Thank you!