

Adversarial Attack on Attackers: Post-Process to Mitigate Black-Box Score-Based Query Attacks

Sizhe Chen, Zhehao Huang, Qinghua Tao, Yingwen Wu, Cihang Xie, Xiaolin Huang

Department of Automation, Shanghai Jiao Tong University ESAT-STADIUS, KU Leuven

Computer Science and Engineering, University of California, Santa Cruz

NeurIPS 2022

Introduction

The adversarial threat has been made feasible by score-based query attacks (SQAs),

which greedily update x_k by a query sample x_q (crafted by certain strategies from x_k) if it reduces DNN's loss.

SQAs only use DNN output scores, but could efficiently attack within dozens of queries, posing great danger.

However, existing defenses against worst-case perturbations are not suitable for mitigating real-world SQAs.

We note that in black-box settings, a post-processing module in test time is sufficient to mitigate SQAs. Advantages of post-processing: (1) mitigate SQAs; (2) preserve model accuracy; (3) improve model calibration.

How to serve users while mitigating SQA attackers when they access the same output information?

Andriushchenko et al. Square attack: A query-efficient black-box adversarial attack via random search, ECCV 2020 Guo et al. On calibration of modern neural networks, ICML 2017

Adversarial attack on attackers (AAA)

- fool attackers into incorrect attack directions by slight perturbations on DNN outputs in the test time
- manipulate the loss trend, which is the only metric SQAs base on
- attackers trying to greedily update samples following the original trend are led to incorrect paths

Line 1: get the original margin loss l_{atr} from unmodified logits z_{org} by assuming the current prediction is correct Line 2: divide losses into intervals by periodic loss attractors l_{atr} , and set the target loss value l_{trg} accordingly Line 3: set the target prediction confidence p_{atr} by a pre-calibrated temperature T Line 4: optimize the logits z to form the misleading loss curve l_{trg} while outputting accurate confidence p_{trg}

Experiments

AAA alters scores most slightly without influencing accuracy, but is outstanding in mitigating SQAs v.s. baselines. Defenses' Influence on DNN Scores / Decisions SQA Adversarial Accuracy of Defenses

Expected Calibration Error (ECE \downarrow) is a measure of calibration (the difference between accuracy and confidence). RND: Random Noise Defense, AT: Adversarial Training

Qin et al. Random noise defense against query-based black-box attacks, NeurIPS 2021. Dai et al. Parameterizing activation functions for adversarial robustness, IEEE S&P, 2022. 3

- AAA mitigates SQAs most effectively with improvements on calibration and without hurting accuracy.
- AAA could be easily plugged into existing defenses, e.g., adversarial training.
- It is also easy to mislead adaptive attackers in real-world scenarios by, e.g., AAA-sine.

Model	Metric / Attack	None	adv-train	random-input	AAA-linear	
CIFAR-10	ECE (%)	3.52	11.00	6.32	2.46	
$\ell_{\infty} = \frac{8}{255}$	Acc (%)	94.78	87.02	91.05	94.84	
	Square	39.38 / 00.09	78.30 / 67.44	60.83 / 49.15	81.36 / 80.59	
Wide-	SignHunter	41.14 / 00.04	78.87 / 66.79	61.02 / 47.82	79.41 / 76.71	
ResNet28	SimBA	53.04 / 03.95	84.21 / 75.85	76.39 / 64.34	88.86 / 83.36	
	NES	83.42 / 12.24	85.92 / 81.01	86.23 / 68.19	90.62 / 85.95	
	Bandit	69.86 / 41.03	83.62 / 76.25	70.44 / 41.65	80.86 / 78.36	
ImageNet	ECE (%)	5.42	5.03	5.79	4.30	
$\ell_{\infty} = \frac{4}{255}$	Acc (%)	77.11	66.30	75.32	77.17	
	Square	52.27 / 09.25	59.20 / 51.11	58.67 / 50.54	63.13 / 62.51	
Wide-	SignHunter	53.05 / 13.88	59.47 / 56.22	59.36 / 52.98	62.35 / 56.80	
ResNet50	SimBA	71.79 / 20.90	65.64 / 47.60	66.36 / 63.27	74.16 / 67.14	
	NES	77.11 / 64.93	66.30 / 64.38	71.33 / 66.05	77.12 / 67.06	
	Bandit	71.33 / 65.77	65.30 / 63.98	65.15 / 61.38	72.15 / 70.53	

Table 4: Generalization of AAA tested by Square attack (#query = 100/2500, CIFAR-10)

				Metric / Attack	None	AAA-linear	adv-train (AT)	AT-AAA-linear
Table 6: AAA under adaptive attacks (100 queries)			ECE (%)	3.52	2.46	11.00	10.56	
Defense	None	AAA-linear	AAA-sine -	Acc (%)	94.78	94.84	87.02	87.02
Square	39.38	81.36	78.34	untargeted $\ell_{\infty} = 8/255$ targeted $\ell_{\infty} = 8/255$	39.38 / 00.09 75.59 / 02.84	81.36 / 80.59 92.05 / 91.62	78.30 / 67.44 85.75 / 82.72	80.80 / 80.13 86.22 / 86.13
bi-Square op-Square	57.09 94.78	62.91 57.31	76.69 76.41	untargeted $\ell_2 = 0.5$ untargeted $\ell_2 = 2.5$	81.53 / 18.75 12.77 / 00.01	92.66 / 92.63 70.35 / 63.46	84.26 / 78.97 57.88 / 25.19	85.12 / 84.31 74.03 / 73.72

Conclusion

• Propose that post-processing could be an **effective**, **user-friendly**, **and plug-in defense** against score-based query attacks.

- Design a defense to **attack score-based attackers into incorrect directions** by slightly **perturbing the model outputs in test time**.
- Extensive study show AAA outperforms existing defenses significantly in the **accuracy, calibration, and protection performance**.
- Defending against other types of attacks is beyond our scope, e.g., white-box attacks, transfer-based attacks, and decision-based query attacks, which are either unfeasible or inefficient in the real world.

Thanks for listening Welcome discussions sizhe.chen@sjtu.edu.cn

