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Overview

Objective: Proposing a more efficient and effective optimal transport-based
biclustering approach.

Approach:
— Proposing two formulations of the block seriation problem through the
lens of optimal transport. One that is hard (BCOT) and one that is fuzzy
(BCOT,).

— Solving the resulting problems via block coordinate descent which boils
down to solving intermediate OT problems.

Outcome: Experimental results seem to support the superiority of our
approach w.r.t other OT biclustering algorithms.



Optimal Transport

Given an a cost matrix M, a source distribution w, and a target distribution v.

Discrete optimal transport:

OT(M,w,v) £ min (M,Z) (1)
ZeIl(w,v)
Entropic discrete optimal transport:
OT\(M,w,v) 2 min (M,Z) — \H (Z). (2)

ZeIl(w,v)



Biclustering

Bipartite Graphs:

o Onxn B
A= ( B’ 0d><d> '
The matrix B is called biadjacency matrix.

Block Seriation:

max E bijZinWip,-
ZeT(n,k)

Wel(dk) bhh



Biclustering using Optimal Transport

Let L(B) be the anti-biadjacency of a bipartite graph such that L(B);;
discrepancy measure between node 7 and ;.

We define the OT biclustering problem as

BCOT(w,v,r,c) = Z%l(in) (L(B),ZW") (5)
cll(w,r
Well(v,c)

— The transport plans Z and W resemble hard partition matrices.



Fuzzy Biclustering using Regularized OT

The previous formulation can be sped up.

We use entropic regularization to propose a fuzzy and faster to solve
problem

BCOT)(w,v,r,c) £ , rﬁ(in ) (L(B),ZW') — \zH (Z) — A\wH (W)  (6)
ell(w,r
Well(v,c)

— The transport plans Z and W resemble fuzzy partition matrices.



Biclustering Structure of Different Models

(a) Block Seriation. (b) BCOT. (c) BCOT,.

Figure: Biclusters formed using three different methods on the Pubmed dataset:
- Classical block seriation results in a hard biclustering.

- BCOT results in an almost hard.

- BCOT, results in a soft biclustering.



Optimization

Algorithm 1: BCOT

Input : B bi-adjacency matrix,
w and v row and column weights,
r and ¢ row and column exemplar distributions.
Output: 7", 7¢ row and column partitions
W Wit
while not converged do
Z + arg 0T (L(B)W, w,r);
W <« arg 0T (L(B)"Z, v, ¢c);
end
Generate 7", 7¢ from Z and W;




Examples of Special Cases of our Model

¢ Modularity Maximization in Bipartite Graphs.
— BCOT with L(B) = —(B — ;-B11"B).

¢ Modularity-Based Sparse Soft Graph Clustering.
— BCOT, with L(B) = —(B — ;-B11"B).

¢ Directional Co-clustering with a Conscience.
— BCOT with L(B) = —B and cluster size binding.

e Bipartite Correlation Clustering.

— BCOT with
-1 ifb,; >0
L B i = * 7
(B {+1 otherwise ?)



Experiments on Synthetic Data

Table: Biclustering performance on synthetic datasets.

Method | A B C D

k-means | 100.020.0 95.0¢5.0 95.3+4.0 96.6+4.7
CCOoT 544+3.5 70.0+0.0 29.7+04 55.7+1.8
CCOT-GW 99.1+0.0 83.5x0.0 83.4x0.0 75.3x0.0
COOoT 99.8+0.0 78.8+x2.0 99.8+0.0 93.7+1.2
COOT, 399+24 849+46 282+0.0 60.7+0.0
BCOT 99.8+0.0 80.4+2.2 99.6x0.1 91.3+0.7
BCOT, 100.0+0.0 99.1+0.4 100.0+0.0 100.0+0.0
BCOT (gndr, ¢) samer,c 99.9+0.0 samer,c 95.5+2.3
BCOT, (gndr,c) | samer,c¢ 100.0+0.0 samer,c¢ 99.2+0.9




Experiments on Document-Term Matrices

Clustering Acc (%)
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Figure: Accuracy against training time on NG20 and Ohscal.
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Thank you.



