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Risk-Averse Reinforcement Learning

* Instead of expected return — optimize Conditional Value at Risk

* Average over the a-tail (a worst quantiles)
e (synonyms: CVaR, AVaR, ES, ETL)

Expectation: E[R]

CVaR,(R) = E[R|R < q,(R)]

!
Quantile: g, (R)



Risk-Averse Policy Gradient

e Optimizing CVaR using Policy Gradient (CVaR-PG):
e while true:
* roll N episodes
* take the worst alN episodes
e optimize using a standard PG step:
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(Tamar et al., 2015)



https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/viewPaper/9429

Example: The Guarded Maze

e Goal: get to the target fast
* Red zone: random guard-bribery cost
* Small cost every time step

e Paths:

* Mean-optimal: short path
e CVaR-optimal (& = 5%): long (safe) path




CVaR-PG on the Guarded Maze

* Staying is learned as better than short path
* Long path is never on worst aN episodes

=» never fed to the optimizer =» never learned

Blindness to Success
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https://arxiv.org/abs/1404.3862

Mean-PG vs. CVaR-PG

e C =guard cost
* (in general: environment conditions)

* The PG training process:
C PG/ early C GCVaR / early
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Mean-PG vs. CVaR-PG

* ldea: focus on top (hard conditions), not left (bad strategy)
e Top — Cross Entropy Method: Learn which C’s are more difficult, and over-sample them
* Not left — Soft Risk: In the beginning, don’t limit to bad returns
* CeSoR = Cross entropy Soft Risk

C PG /early C GCVaR /early (¢ CeSoR/ early
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Driving: Intuitive Risk-Averse Policy
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(b) Driving Game

(e) An accident of PG. In the same
situation, CeSoR maintains a safe
margin from the leader, without los-
ing as much distance as GCVaR.

Keeps slightly more distance than vanilla
PG: sufficient to prevent all accidents
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summary

* Problem: optimize the CVaR risk-measure in RL

e Standard methods: optimize wrt worst episodes

* Small part of data = sample inefficient
* Worst part of data =2 blindness to success

* CeSoR: optimize wrt hard conditions (CEM), not bad strategies (soft risk)
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(d) CeSoR learns to avoid the risk (e) An accident of PG. In the same (f) CeSoR handles the exceptional
(red) and take the long path to the situation, CeSoR maintains a safe peak in user-requests without pay-
target (green), whereas GCVaR suf- margin from the leader, without los- ing for as many servers as GCVaR,
fers from blindness to success. ing as much distance as GCVaR.  leading to a higher total value.



