Efficient Risk-Averse Reinforcement Learning (RL)

Ido Greenberg¹, Yinlam Chow², Mohammad Ghavamzadeh², Shie Mannor^{1,3}

NeurIPS, 2022

¹Technion, Israel; ²Google research; ³Nvidia research

Risk-Averse Reinforcement Learning

- Instead of *expected* return optimize *Conditional Value at Risk*
 - Average over the α -tail (α worst quantiles)
 - (synonyms: CVaR, AVaR, ES, ETL)

Risk-Averse Policy Gradient

- Optimizing CVaR using Policy Gradient (CVaR-PG):
 - while true:
 - roll N episodes
 - take the worst αN episodes
 - optimize using a standard PG step:

$$\Delta_{\theta} \propto \frac{1}{\alpha N} \sum_{i=1}^{N} \mathbf{1}_{R_i \leq q_{\alpha}(R)} \left(R_i - q_{\alpha}(R) \right) \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

(Tamar et al., 2015)

Example: The Guarded Maze

- Goal: get to the target fast
 - Red zone: random guard-bribery cost
 - Small cost every time step
- Paths:
 - Mean-optimal:
 - CVaR-optimal ($\alpha = 5\%$):

short path long (safe) path

CVaR-PG on the Guarded Maze

- Staying is learned as better than short path
- Long path is never on worst αN episodes
 - \rightarrow never fed to the optimizer \rightarrow never learned

Blindness to Success

Mean-PG vs. CVaR-PG

- *C* = guard cost
 - (in general: environment conditions)
- The PG training process:

Mean-PG vs. CVaR-PG

- Idea: focus on top (hard conditions), not left (bad strategy)
 - Top Cross Entropy Method: Learn which C's are more difficult, and over-sample them
 - Not left Soft Risk: In the beginning, don't limit to bad returns
 - **CeSoR** = Cross entropy Soft Risk

Driving: Intuitive Risk-Averse Policy

(b) Driving Game

(e) An accident of PG. In the same situation, CeSoR maintains a safe margin from the leader, without losing as much distance as GCVaR.

Keeps slightly more distance than vanilla PG: sufficient to prevent all accidents

Slightly less use of gas & brakes

Summary

- Problem: optimize the CVaR risk-measure in RL
- Standard methods: optimize wrt worst episodes
 - Small part of data \rightarrow sample inefficient
 - Worst part of data → blindness to success
- **CeSoR**: optimize wrt hard conditions (CEM), not bad strategies (soft risk)

(d) CeSoR learns to avoid the risk (e) An accident of PG. In the same (red) and take the long path to the target (green), whereas GCVaR suffers from blindness to success.

situation, CeSoR maintains a safe margin from the leader, without los- ing for as many servers as GCVaR, ing as much distance as GCVaR.

(f) CeSoR handles the exceptional peak in user-requests without payleading to a higher total value.