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Example: ARMMAN

e mMitra: Maternal health information via voice and text
messages (2.6 million women reached!)
o Limited Resource: Phone call by health worker
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Example: ARMMAN

e mMitra: Maternal health information via voice and text
messages (2.6 million women reached!)
o Limited Resource: Phone call by health worker

Age: 23
Location: Rajasthan
Education: Grade 10

Age: 28
Location: Rajasthan

Education: Undergrad “
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Example: ARMMAN

e mMitra: Maternal health information via voice and text
messages (2.6 million women reached!)
o Limited Resource: Phone call by health worker

25%
Age: 23 Predict °
Location: Rajasthan > Prob of
Education: Grade 10 Dropping Off

Age: 28 Predict 10%

Location: Rajasthan >
Education: Undergrad Prob of
° Dropping Off

4

54



Example: ARMMAN

e mMitra: Maternal health information via voice and text
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Standard Solution: “2-Stage” Learning

e Training
Training | Predict | predicted Evaluate |« pss”
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Learn Learn
True

Parameters




Standard Solution: “2-Stage” Learning

e Training
Training Predict . Predicted Evaluate |  «| oss”
Features | | Parameters | | ' (e.g. MSE)
Learn Learn
True
Parameters
e Testing
Features | |earned Parameters Quality”
Model
True
Parameters

57
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Mismatch of Objectives
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Mismatch of Objectives
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SoTA: Decision Focused Learning (DFL)

Decisions

Evaluate

“Decision
Quality”

Training | Predict | predicted Optimize
Features |Learn _ | ‘Parameters” || |
Model Learn
True
“Parameters’
Training

We can learn better models by taking into account task structure

while training!
[EImachtoub and Grigas 2022, Donti et al. 2017, Wilder et al. 2019]
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Challenge

e Differentiating through the optimization problem is difficult:

Predicted Optimize
“Parameters”

»  Decisions

o E.g., argmax operation is non-smooth in discrete optimization

e Past Work: Create “surrogate” problems that you can differentiate
through. BUT:
A. Surrogates are handcrafted and task-specific
B. Surrogates are often not convex
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Contribution (2)

e lIdea: (A) Automatically learn task-specific “loss” functions that are (B)
convex-by-construction
o Does away with argmax/surrogates altogether!

e Results: We outperform 2-stage on three resource allocation

domains from the literature
o We even do better than DFL in the two domains where DFL

requires surrogates!
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Notation
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Notation

Predict Predicted Optimize o Evaluate “Daciai
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True
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e Decision Quality: How good are the decisions made on
predicted parameters when tested on the true parameters?
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Minimal Example

e Resource Allocation: 2 Beneficiaries (A and B), 1 Resource
o Predict: Utilities for beneficiaries
o Optimize: Give resource to beneficiary with higher utility

e Decision Quality: True utility of the beneficiary who you give the
resource to

74



13

Prediction Accuracy vs. Decision Quality
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Prediction Accuracy vs. Decision Quality
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Prediction Accuracy vs. Decision Quality
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Non-Smoothness

Predicted Utility for B
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Non-Smoothness

Predicted Utility for B
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Decision quality is piecewise constant

|

Gradients for DFL are uninformative
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Non-Smoothness
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“Decision Loss”
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We formulate learning the decision loss
as a supervised learning problem
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Learning Decision Loss

Unknown

Predicted
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y

N

True
“Parameters”

y

L

-
-
-

Decision Loss

e Step 1: Generate samples of “realistic” (y, y) inputs and calculate DQ

to create training data

e Step 2: Fit a convex-by-construction model to these input-output pairs
8

A 4
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Step 1: Generate “Predicted Parameters”
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Step 1: Generate “Predicted Parameters”

But how? Don’t we need a predictive model for that?
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Localness Assumption

e The predictive model will get you close to the true params
o Decision Loss’ job is to help differentiate between predictions that
are close to the true label
o “Realistic predictions” — “Approximately correct predictions”
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Localness Assumption

e The predictive model will get you close to the true params
o Decision Loss’ job is to help differentiate between predictions that
are close to the true label
o “Realistic predictions” — “Approximately correct predictions”
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Localness Assumption

e The predictive model will get you close to the true params
o Decision Loss’ job is to help differentiate between predictions that
are close to the true label
o “Realistic predictions” — “Approximately correct predictions”
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Localness Assumption

e The predictive model will get you close to the true params
o Decision Loss’ job is to help differentiate between predictions that
are close to the true label
o “Realistic predictions” — “Approximately correct predictions”

True Utilities Predicted Predicted Predicted
(A, B) Utilities #1 Utilities #2 Utilities #3
(A, B) (A, B) (A, B)
y y y y
0,1) (0, 3) (2, 1) (0, 2000)
y 4
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Sampling Strategies (Step 1)

e Sample “realistic’/nearby points by adding Gaussian Noise to the true
parameters:
o All-Perturbed: Add noise to all n dimensions simultaneously

Y. =y + € =y, +a-N(0,I)

o 1-Perturbed and 2-Perturbed: Perturb 1 or 2 dimensions at a time.
m Similar to calculating the numerical gradient and hessian
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In the context of past approaches
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In the context of past approaches

Predicted Utility for B Predicted Utility for B
2 | I 5 Y 4 I I
el e
A e -
l"\l'\=4 < / p .OIQJ\-,. O HEE
DQEA—— %7 ] EEEL SN RSR R
) e |- -
2 2 © 2 A o (YT Y
7 =
Z 3
4 1 =0 Q 1
>
J - EENEEEEEN NN

True Optimization Sampled Points

v Jof Apmn pejoipaid



21

In the context of past approaches
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In the context of past approaches
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Step 2: Learn a Task-Specific Loss
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Step 2: Learn a Task-Specific Loss

How do we make it “convex-by-construction”?
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Loss Function Families (Step 2)

e (Approach 1) Weighted-MSE:
o Hypothesis: Decision Quality is not equally sensitive to all

parameters  trye Utilities
(A, B)

y
0, 1)
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Loss Function Families (Step 2)

e (Approach 1) Weighted-MSE:
o Hypothesis: Decision Quality is not equally sensitive to all

parameters  Trye utilities True Utilities
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Loss Function Families (Step 2)

e (Approach 1) Weighted-MSE:
o Hypothesis: Decision Quality is not equally sensitive to all

parameters
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Loss Function Families (Step 2)

e (Approach 1) Weighted-MSE:

o Hypothesis: Decision Quality is not equally sensitive to all

parameters  Trye utilities True Utilities
(A, B) (A, B, C, D)
y y
—_
0, 1) 0. 1]f000, 1001)

o |dea: Learn a “weight” for each parameter, based on how much it

affects the Decision Quality

dim(y)

> w (G- w)?
I=1
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Loss Function Families (Step 2)

e (Approach 2) “Directed Weighted-MSE":
o Hypothesis: Over-predicting and under-predicting can have
different consequences.

True Utilities Predicted Predicted
(A, B) Utilities #1 Utilities #2
(A, B) (A, B)

y N y
0, 1) ©0,3) 1 ©0,-1)4

104



24

Loss Function Families (Step 2)

e (Approach 2) “Directed Weighted-MSE":
o Hypothesis: Over-predicting and under-predicting can have
different consequences.

True Utilities Predicted Predicted
(A, B) Utilities #1 Utilities #2
(A, B) (A, B)
y N y
(0,1) 0,3 T ©0,-1)§

o |dea: Learn different parameters for over- and under-predicting
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Loss Function Families (Step 2)

e (Approach 3) “Quadratic”:
o Hypothesis: It's not just about whether individual predictions are
over- or under-predict

True Utilities Predicted Predicted
(A, B) Utilities #1 Utilities #2
(A, B) (A, B)

y N y

0, 1) 1,00 §4 1,014

106



25

Loss Function Families (Step 2)

e (Approach 3) “Quadratic”:
o Hypothesis: It's not just about whether individual predictions are
over- or under-predict

True Utilities
(A, B)

y
0, 1)

Predicted
Utilities #1

(A, B)

y

-1,0) §§

Predicted
Utilities #2

(A, B)

y

1,018

o |dea: Learn a low-rank symmetric PSD matrix H

(9 —y) " H(G—y)
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Loss Function Families (Step 2)

e (Approach 3) “Quadratic”:
o Alternate Interpretation: Equals 2"d-order Taylor series
approximationof DLaty =y

Un constant 0 < (yn, 1@ is a minima
e N e R 7 ~
DL(yn T €, yn) = DL(yn,yn) + VgnDL(yn, yn) €
+ €' Vi DL(Yn,yn)€+...

\.r
Hessian H

~ DL(Yn,Yn) + (G — Yn) T H (G, — yn)
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Loss Function Families (Step 2)

e (Approach 3) “Quadratic”:
o Alternate Interpretation: Equals 2"d-order Taylor series
approximationof DLaty =y

Un constant 0 < (yn, 1@ is a minima
e N e R 7 ~
DL(yn T €, yn) = DL(yn,yn) + VgnDL(yn, yn) €
+ €' Vi DL(Yn,yn)€+...

\.r
Hessian H

~ DL(Yn, Yn) + (Gn — Yn)TH(Gn — yn)
- DL(gnayn) - DL(yn7yn) ~ (gn _ yn)TH(gn o yn)
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Overall Approach
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Domains

Three resource allocation domains from the literature:

1. Linear Model: Top-K

o predictive model is linear, but underlying distribution is cubic
2. Web Advertising: Submodular Maximization

o Predict CTRs, decide which websites on which to advertise
3. Portfolio Optimization: Quadratic Program

o Predict future stock value, maximize “return” - “risk”
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Baselines

e Upper and Lower Bounds:
o Random: Randomly sample a value from UJ0, 1]
o Optimal: Use true parameters as predictions

e Past Approaches:
o 2-Stage (MSE): Train predictive model with MSE
o DFL: Using the surrogate from the literature

e |mportance of Convexity:
o NN-based “Decision Loss”
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Results 1: Performance on 3 Domains

Normalized D(Q On Test Data
Linear Model = Web Advertising Portfolio Optimization

Loss Function

Random 0 0 0

Optimal 1 1 1
2-Stage (MSE) -0.953 £ 0.000 0.476 £0.147 0.320 £0.015
DFL 0.828 +0.383 0.854 £ 0.100 0.348 + 0.015
DirectedQuadratic 0.962 + 0.000 0.910 £0.043 0.325 £0.014

Takeaway 1: Directed Quadratic does well consistently without
handcrafting! 4
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Results 1: Performance on 3 Domains

Normalized D(Q On Test Data
Linear Model = Web Advertising Portfolio Optimization

Loss Function

Random 0 0 0
Optimal 1 1 1
2-Stage (MSE) -0.953 +0.000 0.476 +0.147 0.320 +£0.015
DFL 0.828 +0.383 0.854 +0.100 0.348 + 0.015
NN 0.962 = 0.000 0.814 +0.137 -0.105 +£0.084

Takeaway 2: Lack of Convexity can lead to inconsistent results
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Results 1: Performance on 3 Domains

Loss Function

Normalized D(Q On Test Data

Linear Model = Web Advertising Portfolio Optimization
Random 0 0 0
Optimal 1 1 1
2-Stage (MSE) -0.953 £ 0.000  0.476 + 0.147 0.320 £ 0.015
DFL 0.828 + 0.383 0.854 + 0.100 0.348 + 0.015
NN 0.962 + 0.000 0.814 £ 0.137 -0.105 £ 0.084
WeightedMSE -0.934 £0.060  0.576 £ 0.151 0.308 £ 0.018
DirectedWeightedMSE  0.962 + 0.000 0.533 £0.137 0.322 £ 0.015
Quadratic -0.752 £ 0.377 0.931 + 0.040 0.272 £ 0.020
DirectedQuadratic 0.962 = 0.000 0.910 £ 0.043 0.325+0.014

Takeaway 3: DFL has high variance (when surrogates are non-
convex)
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Results 2: Ablations (on Web Advertising domain)

Normalized Test D) Normalized Test D) Normalized Test DQ

Approach (1-Perturbed) (2-Perturbed) (All-Perturbed)
NN 0.855 £ 0.121 0.888 + 0.086 0.802 £+ 0.159
WeightedMSE 0.496 £+ 0.138 0.533 £0.139 0.576 + 0.151
DirectedWeightedMSE 0.470 £ 0.150 0.533 +0.160 0.500 £ 0.130
Quadratic 0.773 £ 0.250 0.877 £+ 0.097 0.918 +0.048
DirectedQuadratic 0.770 £ 0.187 0.842 £+ 0.109 0.845 + 0.080

Varying Sampling Strategy: Best strategy is dependent on the
loss function family
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Results 2: Ablations (on Web Advertising domain)

Normalized Test D(@Q Normalized Test D)  Normalized Test DQ

Approach (50 samples) (500 samples) (5000 samples)

NN 0.805 +0.134 0.802 4+ 0.159 0.814 +£0.137

WeightedMSE 0.496 + 0.138 0.496 + 0.139 0.533 +0.137
DirectedWeightedMSE 0.477 +0.147 0.533 +£0.159 0.533 + 0.149
Quadratic 0.677 = 0.173 0.918 +0.048 0.931 £+ 0.040
DirectedQuadratic 0.594 +0.134 0.845 4 0.081 0.910 +£0.043

Varying Number of Samples: More samples is better



36

Results 3: Quality of Learned Loss vs. Decision Quality

e “Error” depends on distribution of interest:
o “Empirical Neighbourhood”: True “predicted” parameters
encountered while training predictive model
o “Gaussian Neighbourhood”: Proxy for above calculated by
adding noise to the “true” labels

e The second is an approximation for the first (via the localness
assumption)
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Results 3: Quality of Learned Loss vs. Decision Quality

Quality of Surrogate vs DQ
MAE in Gaussian MAE in Empirical Normalized DQ

g
Approach Neighborhood Neighborhood on Test Data ~
NN 0.0094 £ 0.0006 0.0222 £ 0.0173 0.802 £0.159 f
WeightedMSE 0.0104 + 0.0000 0.0448 £+ 0.0171 0.576 4+ 0.151 205
DirectedWeightedMSE  0.0092 + 0.0000 0.0558 £+ 0.0164 0.500 £0.130 g
Quadratic 0.0096 £ 0.0000 0.0086 +0.0052 0.918 :0.048 =2

DirCCtedQuadratiC 0.0106 +£ 0.0000 0.0191 += 0.0079 0.845 £+ 0.080 0.0 0.00 0.05 0.10
MAE in Empirical Neighbourhood

Decision Quality is correlated with Error in the Empirical Neighbourhood
but not the Gaussian Neighbourhood!
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Conclusions

e \We provide a novel way to address the “non-differentiability’ of
optimization problems in the context of predict-then-optimize

e \We show that our approach performs well on 3 domains from the
literature
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Future Work: 1-Year Scale

e Better Proxy for “Empirical Neighbourhood”: We see that the
Gaussian Neighbourhood is not an ideal proxy.
o Perhaps we can use a 2-stage model to sample points?

e Theoretical Analysis of DFL: So far, we only show that our
approach outperforms 2-stage on 3 domains. However, the results
can be sensitive to small changes in the domain.

o Can we analyze necessary conditions for the improvement?
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Future Work: PhD Scale

e Better understand the mechanism behind why DFL does better than
2-stage and see if we can generalize that without DFL
o More broadly, see if better “losses” improve ML outputs?

e Find a real-world application in which we can do better by
incorporating task structure while learning
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Thank You!
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Training Schematic
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