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Example: ARMMAN

● mMitra: Maternal health information via voice and text 
messages (2.6 million women reached!) 
○ Limited Resource: Phone call by health worker

52

3



Example: ARMMAN

● mMitra: Maternal health information via voice and text 
messages (2.6 million women reached!) 
○ Limited Resource: Phone call by health worker

53

Age: 23
Location: Rajasthan
Education: Grade 10

Age: 28
Location: Rajasthan
Education: Undergrad

3



Example: ARMMAN

● mMitra: Maternal health information via voice and text 
messages (2.6 million women reached!) 
○ Limited Resource: Phone call by health worker

54

Age: 23
Location: Rajasthan
Education: Grade 10

Age: 28
Location: Rajasthan
Education: Undergrad

Predict

Predict

25%
Prob of 

Dropping Off

10%
Prob of 

Dropping Off

3
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● Training

Standard Solution: “2-Stage” Learning
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Learned 
Model
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Mismatch of Objectives
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Mismatch of Objectives
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True Distribution

MSE: Focus on getting most of the 
predictions approximately right.

Objective: Choose top 5% of beneficiaries

But: It’s okay to make errors on these 
predictions…

As long as you get these predictions 
correct!
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SoTA: Decision Focused Learning (DFL)

Training
Features

Predicted
“Parameters” Decisions “Decision 

Quality”
Predict Optimize Evaluate

We can learn better models by taking into account task structure 
while training!

[Elmachtoub and Grigas 2022, Donti et al. 2017, Wilder et al. 2019]
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Challenge

● Differentiating through the optimization problem is difficult:

○ E.g., argmax operation is non-smooth in discrete optimization 

● Past Work: Create “surrogate” problems that you can differentiate 
through. BUT:
A. Surrogates are handcrafted and task-specific
B. Surrogates are often not convex

Predicted
“Parameters” Decisions

Optimize

Learn
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Contribution (1)

● Training

Mismatch of 
Objectives

● Testing
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Contribution (1)

● Training

Mismatch of 
Objectives

● Testing

Align “Loss” and 
“Decision 

Quality” using 
Task-Specific 

Loss Functions
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Contribution (2)

● Idea: (A) Automatically learn task-specific “loss” functions that are (B) 
convex-by-construction
○ Does away with argmax/surrogates altogether!

● Results: We outperform 2-stage on three resource allocation 
domains from the literature
○ We even do better than DFL in the two domains where DFL 

requires surrogates!
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Outline

● Introduction
● Predict-Then-Optimize Details
● Our Approach
● Experiments
● Conclusions and Future Work
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Notation
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Notation

Features 
x

Predicted
“Parameters” 

ŷ

Decisions
z

“Decision 
Quality”

Predict Optimize Evaluate

True
“Parameters” 

y

Mθ(x) z*(ŷ) DQ(z, y)

● Decision Quality: How good are the decisions made on 
predicted parameters when tested on the true parameters?
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Minimal Example

● Resource Allocation: 2 Beneficiaries (A and B), 1 Resource
○ Predict: Utilities for beneficiaries
○ Optimize: Give resource to beneficiary with higher utility

● Decision Quality: True utility of the beneficiary who you give the 
resource to
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Prediction Accuracy vs. Decision Quality
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Prediction Accuracy vs. Decision Quality
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Non-Smoothness

Predicted Utility for B

DQ = 0

DQ = 1

P
redicted U

tility for A
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Non-Smoothness

Predicted Utility for B

Decision quality is piecewise constant

Gradients for DFL are uninformativeDQ = 0

DQ = 1
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redicted U

tility for A
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Non-Smoothness

Predicted Utility for B

DQ = 0
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True Optimization
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Outline

● Introduction
● Predict-Then-Optimize Details
● Our Approach
● Experiments
● Conclusions and Future Work
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“Decision Loss”
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LabelsFeatures

“Decision Loss”

Features 
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We formulate learning the decision loss
as a supervised learning problem 
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Unknown

Learning Decision Loss

● Step 1: Generate samples of “realistic” (ŷ, y) inputs and calculate DQ
to create training data

● Step 2: Fit a convex-by-construction model to these input-output pairs

Decision Loss

Predicted
“Parameters” 

ŷ

True
“Parameters” 

y

Decision 
Quality
DQ
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Step 1: Generate “Predicted Parameters” 
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Step 1: Generate “Predicted Parameters” 

88

But how? Don’t we need a predictive model for that?
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Localness Assumption

● The predictive model will get you close to the true params
○ Decision Loss’ job is to help differentiate between predictions that 

are close to the true label
○ “Realistic predictions” → “Approximately correct predictions”
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Sampling Strategies (Step 1)

● Sample “realistic”/nearby points by adding Gaussian Noise to the true 
parameters:
○ All-Perturbed: Add noise to all n dimensions simultaneously

○ 1-Perturbed and 2-Perturbed: Perturb 1 or 2 dimensions at a time.
■ Similar to calculating the numerical gradient and hessian
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In the context of past approaches
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Step 2: Learn a Task-Specific Loss
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Step 2: Learn a Task-Specific Loss
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How do we make it “convex-by-construction”?
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Loss Function Families (Step 2)

● (Approach 1) Weighted-MSE:
○ Hypothesis: Decision Quality is not equally sensitive to all 

parameters
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Loss Function Families (Step 2)

● (Approach 1) Weighted-MSE:
○ Hypothesis: Decision Quality is not equally sensitive to all 

parameters

ŷ

True Utilities
(A, B, C, D)

(0, 1, 1000, 1001)

○ Idea: Learn a “weight” for each parameter, based on how much it 
affects the Decision Quality
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Loss Function Families (Step 2)

● (Approach 2) “Directed Weighted-MSE”:
○ Hypothesis: Over-predicting and under-predicting can have 

different consequences.
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Loss Function Families (Step 2)

● (Approach 2) “Directed Weighted-MSE”:
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different consequences.

ŷ

Predicted
Utilities #1

(A, B)

(0, 3)

ŷ

Predicted
Utilities  #2

(A, B)

(0, -1)

ŷ

True Utilities
(A, B)

(0, 1)
✓ ❌

○ Idea: Learn different parameters for over- and under-predicting
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Loss Function Families (Step 2)

● (Approach 3) “Quadratic”:
○ Hypothesis: It’s not just about whether individual predictions are 

over- or under-predict
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Loss Function Families (Step 2)

● (Approach 3) “Quadratic”:
○ Hypothesis: It’s not just about whether individual predictions are 

over- or under-predict

ŷ

Predicted
Utilities #1

(A, B)

(-1, 0)
ŷ

Predicted
Utilities #2

(A, B)

(1, 0)
ŷ

True Utilities
(A, B)

(0, 1)
✓ ❌

○ Idea: Learn a low-rank symmetric PSD matrix H
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Loss Function Families (Step 2)

● (Approach 3) “Quadratic”:
○ Alternate Interpretation: Equals 2nd-order Taylor series 

approximation of DL at ŷ = y
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Overall Approach

110

Learn LODL:

Use LODL:
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Outline

● Introduction
● Predict-Then-Optimize Details
● Our Approach
● Experiments
● Conclusions and Future Work
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Domains

Three resource allocation domains from the literature:

1. Linear Model: Top-K
○ predictive model is linear, but underlying distribution is cubic

2. Web Advertising: Submodular Maximization
○ Predict CTRs, decide which websites on which to advertise

3. Portfolio Optimization: Quadratic Program
○ Predict future stock value, maximize “return” - “risk”
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Baselines

● Upper and Lower Bounds:
○ Random: Randomly sample a value from U[0, 1]
○ Optimal: Use true parameters as predictions

● Past Approaches:
○ 2-Stage (MSE): Train predictive model with MSE
○ DFL: Using the surrogate from the literature

● Importance of Convexity:
○ NN-based “Decision Loss”

113
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Results 1: Performance on 3 Domains

Takeaway 1: Directed Quadratic does well consistently without 
handcrafting! 114
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Results 1: Performance on 3 Domains

Takeaway 2: Lack of Convexity can lead to inconsistent results
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Results 1: Performance on 3 Domains

Takeaway 3: DFL has high variance (when surrogates are non-
convex) 116
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Results 2: Ablations (on Web Advertising domain)

Varying Sampling Strategy: Best strategy is dependent on the 
loss function family
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Results 2: Ablations (on Web Advertising domain)

Varying Number of Samples: More samples is better

118

35



Results 3: Quality of Learned Loss vs. Decision Quality

● “Error” depends on distribution of interest:
○ “Empirical Neighbourhood”: True “predicted” parameters 

encountered while training predictive model
○ “Gaussian Neighbourhood”: Proxy for above calculated by 

adding noise to the “true” labels

● The second is an approximation for the first (via the localness 
assumption)
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Results 3: Quality of Learned Loss vs. Decision Quality

Decision Quality is correlated with Error in the Empirical Neighbourhood 
but not the Gaussian Neighbourhood!
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Outline

● Introduction
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● Conclusions and Future Work
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Conclusions

● We provide a novel way to address the `non-differentiability’ of 
optimization problems in the context of predict-then-optimize

● We show that our approach performs well on 3 domains from the 
literature
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Future Work: 1-Year Scale

● Better Proxy for “Empirical Neighbourhood”: We see that the 
Gaussian Neighbourhood is not an ideal proxy.
○ Perhaps we can use a 2-stage model to sample points?

● Theoretical Analysis of DFL: So far, we only show that our 
approach outperforms 2-stage on 3 domains. However, the results 
can be sensitive to small changes in the domain.
○ Can we analyze necessary conditions for the improvement?
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Future Work: PhD Scale

● Better understand the mechanism behind why DFL does better than 
2-stage and see if we can generalize that without DFL
○ More broadly, see if better “losses” improve ML outputs?

● Find a real-world application in which we can do better by 
incorporating task structure while learning
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Thank You!
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Training Schematic
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