# Recommender Forest for Efficient Retrieval

Chao Feng<sup>1\*</sup>, Wuchao Li<sup>1\*</sup>, Defu Lian<sup>1</sup>, Zheng Liu<sup>2</sup>, Enhong Chen<sup>1</sup>

<sup>1</sup>School of Computer Science and Technology University of Science and Technology of China, Hefei, China <sup>2</sup>Microsoft Research Asia, Beijing, China {chaofeng,liwuchao}@mail.ustc.edu.cn {liandefu,cheneh}@ustc.edu.cn,zhengliu@microsoft.com





## Indexes in recommender system

- Recommender system needs to select the top-n items for users from a massive-scale item set.
- For the sake of efficient recommendation, RS usually calls for the collaboration of representation learning and Approximate Nearest Neighbour search (ANNs) index.
- Two kinds of indexes: Independent training & Joint training



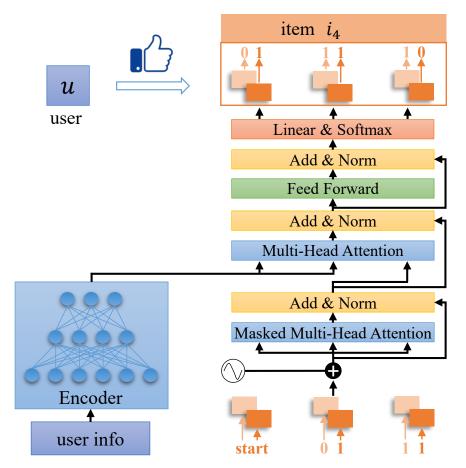
## Independent training index

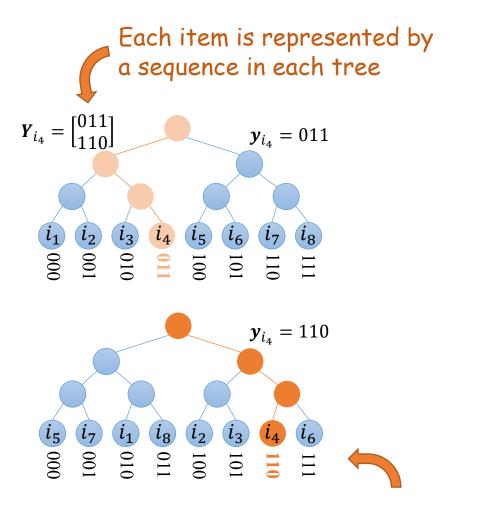
- Process
  - 1. Users and items are represented by embeddings in the same latent space.
  - 2. The item embeddings are organized with a specific ANNs index, like SCANN and HNSW.
- Limitation
  - The representation model is independently learned and can be incompatible with the ANNs index



## Joint training index: TDM & JTM

- The item set is organized with binary tree structure:
  - internal node: cluster center.
  - leaf node: item.
- A preference model is learned to route from the root to the leaf nodes for the top-n recommendation results.
- Achieve empirical gains over the conventional two-stage methods.





## Joint training index: TDM & JTM

- Limitation
  - It is challenging to route to items located around partition boundaries.
  - A routing decision is made without consideration of the routing trajectory.
  - Memory-consuming, given that the number of internal nodes is at the same magnitude as the leaf nodes.



# Introducing RecForest





The sequence length is  $[log_k N]$ 



## Construction of Tree and Forest

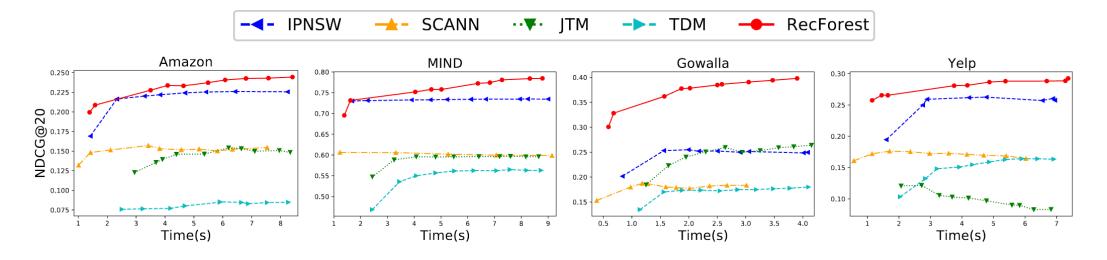
- Tree construction (Blanced-Kmeans)
  - Pre-train item embeddings: DIN or BPR
  - Randomly sample  $K^H N$  items (*H* is the height of the tree) from the entire item set.
  - For each cluster, the included items are evenly partitioned via Kmeans w.r.t. their embedding similarity.
- Forest construction
  - Different trees are naturally diversified due to the inherent randomness.



# Experiments

# Comparison with Baselines

|            | NDCG@20 | NDCG@40 | Memory | Time   | NDCG@20 | NDCG@40 | ) Memory | Time    |
|------------|---------|---------|--------|--------|---------|---------|----------|---------|
| Method     | Movie   |         |        |        | Amazon  |         |          |         |
| DIN        | 0.5440  | 0.5473  | -      | 193.87 | 0.2766  | 0.3039  | -        | 492.64  |
| YoutubeDNN | 0.5329  | 0.5484  | -      | 29.38  | 0.2195  | 0.2491  | -        | 120.91  |
| JTM        | 0.5149  | 0.5075  | 10.80  | 12.05  | 0.1533  | 0.1683  | 75.99    | 6.64    |
| TDM        | 0.4684  | 0.4651  | 10.80  | 9.33   | 0.0856  | 0.0949  | 75.99    | 6.61    |
| SCANN      | 0.4665  | 0.4695  | 3.64   | 18.64  | 0.1529  | 0.1780  | 14.66    | 4.48    |
| IPNSW      | 0.5330  | 0.5486  | 10.08  | 15.52  | 0.2255  | 0.2548  | 66.46    | 10.28   |
| RecForest  | 0.5580  | 0.5682  | 3.21   | 8.33   | 0.2339  | 0.2576  | 7.32     | 3.79    |
| Method     | Gowalla |         |        |        | Tmall   |         |          |         |
| DIN        | 0.2798  | 0.3095  | -      | 186.41 | 0.2275  | 0.2491  | -        | 4057.69 |
| YoutubeDNN | 0.2312  | 0.2637  | -      | 53.55  | 0.1736  | 0.1975  | -        | 1086.75 |
| JTM        | 0.2595  | 0.2484  | 77.56  | 2.64   | 0.0749  | 0.0849  | 151.19   | 30.11   |
| TDM        | 0.1723  | 0.1775  | 77.56  | 2.55   | 0.0257  | 0.0272  | 151.19   | 29.42   |
| SCANN      | 0.1839  | 0.2083  | 15.48  | 1.86   | 0.1105  | 0.1226  | 28.10    | 20.88   |
| IPNSW      | 0.2464  | 0.2805  | 70.39  | 4.73   | 0.1696  | 0.1902  | 132.72   | 52.90   |
| RecForest  | 0.3783  | 0.3963  | 7.39   | 1.82   | 0.2059  | 0.2261  | 9.29     | 18.88   |


More accurate

#### Lighter

Faster

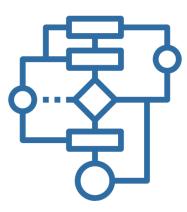


# Comparison with Baselines



- RecForest strikes the best balance between query time and retrieval accuracy.
- With the increase of beam size, the accuracy of RecForest can improve more significantly than baselines.




# Why is RecForest better?

- The retrieval of the near-boundary can be challenging
  - multiple K-ary trees
- Not considering the trajectory history
  - using Transformer Decoder
- Memory-consuming:
  - There are mere K vectors (corresponding to the K different branches) in each K-ary tree.



## More content in the paper







Complexity analysis

Algorithm flow

More experiments



# Thanks