ZeroC: A Neuro-Symbolic Model for Zero-shot Concept Recognition and Acquisition at Inference Time

NeurIPS 2022

Tailin Wu¹, Megan Tjandrasuwita², Zhengxuan Wu¹, Xuelin Yang¹, Kevin Liu¹, Rok Sosic¹, Jure Leskovec¹

> ¹ Stanford University ² MIT

Motivation

Humans have the remarkable ability to **recognize** and **acquire** novel visual concepts in a **zero-shot** manner

Suppose we humans have only learned the concept of "line" and relation of "parallel" and "perpendicular":

Zero-shot recognize novel (hierarchical) concepts:

Given: Symbolic structure of a new concept E.g.. when told a "rectangle" consists of two pairs of "lines", the lines within the pairs are "parallel," and the lines between the pairs are "perpendicular"

Zero-shot recognition:

Motivation

Humans have the remarkable ability to **recognize** and **acquire** novel visual concepts in a **zero-shot** manner

Suppose we humans have only learned the concept of "line" and relation of "parallel" and "perpendicular":

Zero-shot acquire novel (hierarchical) concepts:

Given a single demonstration:

Zero-shot acquire: Symbolic structure of a new concept

A "rectangle" consists of two pairs of "lines", the lines within the pairs are "parallel," and the lines between the pairs are "perpendicular"

Problem definition and significance:

How can we endow machine learning (ML) models with the capability of zero-shot recognition and acquisition of hierarchical visual concepts?

Having such capability will allow ML models to tackle more complex tasks at inference time, without further training on those specific tasks.

Why is it hard:

Because machine learning models typically generalize to examples drawn from same/similar distribution as in training. Here we would like the model to generalize to more complex, hierarchical concepts, not seen previously.

Prior methods:

Only address part of the problem:

- **Visual compositionality:** [1-2] address factors of variation (e.g. color, position, smiling) without hierarchical structures; [3] addresses composition of transformation.
- **Concept** or **relation learning** [4-7]: do not generalize to hierarchical concepts.
- **Zero-shot learning** [8-10]: only generalize to new combinations of features (constituent concepts) while neglecting relation structures.

[1] Du et al. NeurIPS 2020
 [2] Higgins et al. ICLR 2018
 [3] Andreas et al. CVPR 2016
 [4] Snell, NeurIPS 2017
 [5] Mao et al. ICLR 2019
 [6] Kipf et al. ICLR 2018
 [7] Shanahan et al. ICML 2020
 [8] Romera et al. ICML 2015
 [9] Bucher et al. ICCV 2017
 [10] Schonfeld et al. CVPR 2019

Our contribution:

In this work, we introduce Zero-shot Concept Recognition and Acquisition (ZeroC) to address this problem.

ZeroC represents concepts as **graphs** of constituent concept models (as nodes) and their relations (as edges). It allows a **one-to-one** mapping between a *symbolic graph structure* of a concept and its corresponding *recognition model*.

It (for the first time) allows acquiring new concepts, communicating its graph structure, and applying it to classification and detection tasks (even across domains) at inference time.

Question: How to compose the probability function of a hierarchical concept?

Here the f are non-negative functions

Energy-based Models (EBM)

The probability function $p_{\theta}(x)$ can be written in terms of a energy-based model $E_{\theta}(x)$, where E_{θ} maps the input x to a scalar value which we called energy.

$$p_{ heta}(x) \propto e^{-E_{ heta}(x)}$$

The benefit of using EBM is that multiplication of probability translates to addition of the energy terms:

$$p_{\theta_1}(x)p_{\theta_2}(x) \propto e^{-(E_{\theta_1}(x) + E_{\theta_2}(x))}$$

Du, Yilun, et al. Compositional Visual Generation with Energy Based Models, *NeurIPS 2020*: 6637-6647.

ZeroC Hierarchical Composition Rule (e.g. "parallel-line")

 $\begin{array}{ll} E_{X,M,C}(x,m,c) & \mbox{Summing the EBMs for all the nodes and edges together} \\ = E_{X,M_1,C}(x,m_1,c_1) + E_{X,M_2,C}(x,m_2,c_1) + E_{X,M_1,M_2,R}(x,m_1,m_2,r) \\ & \mbox{concept-EBM} & \mbox{concept-EBM} & \mbox{relation-EBM} \end{array}$

Observation x:

Concept graph for "parallel-line":


```
c_1 "line"
r "parallel"
c_1 "line"
c_1 "line"
c "parallel-line"
```

Training:

Given: data tuples of (x, m_1, c_1) or (x, m_1, m_2, r) Learn: energy-based model $E_{X,M_1,C}(x, m_1, c_1)$ or $E_{X,M_1,M_2,R}(x, m_1, m_2, r)$ x: input m: mask c: concept name r: relation name

We augment the state-of-the-art EBM training objective [1] with three more regularizations (from first principles) to learn:

$$L = \frac{1}{N} \sum_{n=1}^{N} \left(L_n^{\text{(Improved)}} + \alpha_{\text{pos-std}} L_n^{\text{(pos-std)}} + \alpha_{\text{em}} L_n^{\text{(em)}} + \alpha_{\text{neg}} L_n^{\text{(neg)}} \right)$$

$$\text{make sure positive} \qquad \text{ensure} \qquad \text{encourage}$$

make sure positive example have similar energy consistency in concept acquisition encourages "connected" masks

[1] Du, Yilun, et al. "Improved contrastive divergence training of energy based models." *ICML 2021*

Inference: (1) Zero-shot concept recognition

Given: graph structure of a hierarchical concept

E.g. for the concept of "Fshape":

Compose: ZeroC first compose an EBM based on the given graph:

 $E(x, m, c_{\text{Fshape}}) = E(x, m_1, m_2, r_{\text{perp}}) + E(x, m_1, m_3, r_{\text{perp}}) + E(x, m_2, m_3, r_{\text{par}}) + \sum_{i=1,2,3} E(x, m_i, c_{\text{line}})$

Detection: (infer the mask given image x and concept name c):

Inference: (1) Zero-shot concept recognition

Given: graph structure of a hierarchical concept

E.g. for the concept of "Eshape":

Classification:

Inference: (2) Zero-shot concept acquisition

Difficult because it is a **NP-hard** subgraph isomorphism task

Experiment 1: zero-shot recognition

Training dataset (HDConcept: elementary concepts and relations):

Training on concepts of "Eshape", "rectangle" and relations of "inside", "non-overlap", "outside":

Experiment 1: zero-shot recognition

Test dataset (HDConcept: hierarchical concepts):

Test on hierarchical concept (e.g. Concept1) that consists of "Eshape", "rectangle" combined in certain way. E.g.:

Inference: Detecting Concept1 from distractor, given x and concept1's concept graph

Experiment 1: zero-shot recognition

	Classification (acc.)		Detection (IoU)	
Model	HD-Letter	HD-Concept	HD-Letter+distractor	HD-Concept+distractor
Statistics	46.5	53.5	5.69	12.6
Heuristics	(-)	(-)	42.3	29.2
CADA-VAE [8]	18.0	66.0	(-)	(-)
ZeroC (ours)	84.5	70.5	72.5	84.7
ZeroC composition without R-EBM	62.5	32.5	45.3	84.3
ZeroC composition without HC-EBM	67.0	55.0	67.7	78.4
ZeroC without $L^{(\text{pos-std})}$	43.6	65.5	76.1	81.5
ZeroC without $L^{(neg)}$	64.5	59.0	60.0	84.2
ZeroC without $L^{(em)}$	81.5	61.0	68.0	86.0
ZeroC with only $L^{(Improved)}$	27.5	55.5	49.1	81.7

- ZeroC can zero-shot recognize hierarchical concepts with reasonable accuracy
- ZeroC outperforms the strong zero-shot learning baseline of CADA-VAE
- Ablation: The different components are necessary

Experiment 2: zero-shot acquisition

Table 2: Performance of models on acquiring concepts between models and domains at inference time (%).

	Domain 1 (2D image) Parsing		
Model	Isomorphism (acc.) \uparrow	Edit distance \downarrow	
Statistics	2.33	3.14	
Mask R-CNN [13]+relation classification	35.5	1.01	
$\mathbf{ZeroC}_1 ightarrow \mathbf{ZeroC}_2$ (ours)	₄ 72.7	0.50	
$\overline{\text{ZeroC}_1 \text{ without } L^{(\text{pos-std})} \rightarrow \text{ZeroC}_2}$	55.2	1.57	
ZeroC_1 without $L^{(\operatorname{neg})} \to \operatorname{ZeroC}_2$	53.5	0.99	
ZeroC_1 without $L^{(\operatorname{em})} \to \operatorname{ZeroC}_2$	50.7	1.58	
ZeroC_1 with only $L^{(\operatorname{Improved})} \to \operatorname{ZeroC}_2$	11.5	2.00	
$ZeroC_2$ with ground-truth graph (upper bound)	/ (-)	(-)	

*we use a stringent **subgraph isomorphism accuracy** which is only 1 if the inferred graph is isomorphic to ground-truth. An individual node/edge accuracy of 0.8 will result in overall accuracy of $0.8^{10} = 0.107$

Example task: 2D to 3D transfer of concepts without training:

Experiment 3: CLEVR dataset:

Model	Classification acc (%)
Statistics	33.4
CADA-VAE	45.3
ZeroC (ours)	56.0

ZeroC outperforms the strong baseline of CADA-VAE model, and able to reasonably classify the hierarchical concepts.

Summary:

In this work, we introduce Zero-shot Concept Recognition and Acquisition (ZeroC), a neuro-symbolic architecture that can recognize and acquire novel concepts in a zero-shot way.

It is able to perform:

- **Zero-shot recognition:** recognize more complex concepts at inference, without further training
- **Zero-shot acquisition:** discover the internal structure of more complex concepts at inference, and transfer the knowledge across domains.

For more, see our paper and project page at <u>http://snap.stanford.edu/zeroc/</u>, or SCAN the QR code:

