Machine Intelligence Of Damo

FILM

Frequency improved Legendre Memory Model for Long-term Time Series Forecasting

Tian Zhou, Ziqing Ma, Xue Wang, Qingsong Wen, Liang Sun, Tao Yao, Wotao Yin, Rong Jin

Neurips22

Contents 目录

01 Problem & Motivations

02 Model Structures

03 Experiments

04 Conclusions

Problem&Motivations -

Problem: Long term Forecasting

125

150

175

200

- 1) How to capture critical historical information as complete as possible
- 2) How to effectively remove the noise

Motivations

We can get a compact Representation of Time Series using Legendre Polynomials projection

Theorem 1 (Similar to Proposition 6 in Gu et al. (2020)). If f(x) is L-Lipschitz, then $||f_{[t-\theta,t]}(x) - g^{(t)}(x)||_{\mu^{(t)}} \leq \mathcal{O}(\theta L/\sqrt{N})$. Moreover, if f(x) has k-th order bounded derivatives, we have $||f_{[t-\theta,t]}(x) - g^{(t)}(x)||_{\mu^{(t)}} \leq \mathcal{O}(\theta^k N^{-k+1/2})$.

Figure 2: Data recovery with Autoencoder structure: recovery a 1024-length data with a bottleneck of 128 parameters. Left: Legendre Projection Unit. Right: LSTM and vanilla Transformer.

Theorem 3. Let $A \in \mathbb{R}^{d \times n}$ be the Fourier coefficients matrix of an input matrix $X \in \mathbb{R}^{d \times n}$, and $\mu(A)$, the coherence measure of matrix A, is $\Omega(k/n)$. We assume there exist s and a positive a_{\min} such that the elements in last d - s columns of A is smaller than a_{\min} . If we keep first s columns selected and randomly choose $\mathcal{O}(k^2/\epsilon^2 - s)$ columns from the remaining parts, with high probability

$$\|A - P(A)\|_F \le \mathcal{O}\left[(1+\epsilon)a_{\min}\cdot\sqrt{(n-s)d}\right],$$

where P(A) denotes the matrix projecting A onto the column selected column space.

Fourier transform $\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) \ e^{-i2\pi\xi x} \ dx, \quad \forall \ \xi \in \mathbb{R}.$

Fourier inverse transform

$$f(x)=\int_{-\infty}^{\infty}\hat{f}\left(\xi
ight)\,e^{i2\pi\xi x}\,d\xi,\quadorall\,x\in\mathbb{R},$$

LPU: Legendre Projection Unit for **memory compression** FEL: Frequency Enhanced Layer for frequency domain **feature transform** and **noise reduction** LPU_R: reverse Legendre Projection Unit for **output generation** RevIN: reversible instance **normalization**

LPU contains two states: Projection & Reconstruction.

C(t) is the compressed memory for historical input up to time t. x(t) is the original input signal at time t. A, B are two pre-fixed projection matrices.

C(t) is reconstructed to original input by multiplying a discrete Legendre Polynomials matrix.

Frequency Enhanced Layer (FEL): we use a **lowest mode sampling** mechanism to remove noise And a **low rank compressed** weight W to process the features.

Mixture of experts/multiscale mechanism: introduce multiscale phenomena bias

Reversible instance normalization: ease the **distribution shift**, slow down the training 2-5 times.

Experiments

Table 1: multivariate long-term series forecasting results on six datasets with various input length and prediction length $O \in \{96, 192, 336, 720\}$ (For ILI dataset, we set prediction length $O \in \{24, 36, 48, 60\}$). A lower MSE indicates better performance. All experiments are repeated 5 times.

Me	thods	FiI	LM	FEDf	ormer	Autof	ormer	S	4	Info	rmer	Log	Frans	Refo	rmer
Μ	etric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETTm2	96	0.165	0.256	0.203	0.287	0.255	0.339	0.705	0.690	0.365	0.453	0.768	0.642	0.658	0.619
	192	0.222	0.296	0.269	0.328	0.281	0.340	0.924	0.692	0.533	0.563	0.989	0.757	1.078	0.827
	336	0.277	0.333	0.325	0.366	0.339	0.372	1.364	0.877	1.363	0.887	1.334	0.872	1.549	0.972
	720	0.371	0.389	0.421	0.415	0.422	0.419	0.877	1.074	3.379	1.338	3.048	1.328	2.631	1.242
Electricity	96	0.154	0.267	0.183	0.297	0.201	0.317	0.304	0.405	0.274	0.368	0.258	0.357	0.312	0.402
	192	0.164	0.258	0.195	0.308	0.222	0.334	0.313	0.413	0.296	0.386	0.266	0.368	0.348	0.433
	336	0.188	0.283	0.212	0.313	0.231	0.338	0.290	0.381	0.300	0.394	0.280	0.380	0.350	0.433
	720	0.236	0.332	0.231	0.343	0.254	0.361	0.262	0.344	0.373	0.439	0.283	0.376	0.340	0.420
Exchange	96	0.086	0.204	0.139	0.276	0.197	0.323	1.292	0.849	0.847	0.752	0.968	0.812	1.065	0.829
	192	0.188	0.292	0.256	0.369	0.300	0.369	1.631	0.968	1.204	0.895	1.040	0.851	1.188	0.906
	336	0.356	0.433	0.426	0.464	0.509	0.524	2.225	1.145	1.672	1.036	1.659	1.081	1.357	0.976
	720	0.727	0.669	1.090	0.800	1.447	0.941	2.521	1.245	2.478	1.310	1.941	1.127	1.510	1.016
Traffic	96	0.416	0.294	0.562	0.349	0.613	0.388	0.824	0.514	0.719	0.391	0.684	0.384	0.732	0.423
	192	0.408	0.288	0.562	0.346	0.616	0.382	1.106	0.672	0.696	0.379	0.685	0.390	0.733	0.420
	336	0.425	0.298	0.570	0.323	0.622	0.337	1.084	0.627	0.777	0.420	0.733	0.408	0.742	0.420
	720	0.520	0.353	0.596	0.368	0.660	0.408	1.536	0.845	0.864	0.472	0.717	0.396	0.755	0.423
W eather	96	0.199	0.262	0.217	0.296	0.266	0.336	0.406	0.444	0.300	0.384	0.458	0.490	0.689	0.596
	192	0.228	0.288	0.276	0.336	0.307	0.367	0.525	0.527	0.598	0.544	0.658	0.589	0.752	0.638
	336	0.267	0.323	0.339	0.380	0.359	0.395	0.531	0.539	0.578	0.523	0.797	0.652	0.639	0.596
	720	0.319	0.361	0.403	0.428	0.578	0.578	0.419	0.428	1.059	0.741	0.869	0.675	1.130	0.792
ILI	24	1.970	0.875	2.203	0.963	3.483	1.287	4.631	1.484	5.764	1.677	4.480	1.444	4.400	1.382
	36	1.982	0.859	2.272	0.976	3.103	1.148	4.123	1.348	4.755	1.467	4.799	1.467	4.783	1.448
	48	1.868	0.896	2.209	0.981	2.669	1.085	4.066	1.36	4.763	1.469	4.800	1.468	4.832	1.465
	60	2.057	0.929	2.545	1.061	2.770	1.125	4.278	1.41	5.264	1.564	5.278	1.560	4.882	1.483

Table 3: Low-rank Approximation (LRA) study for Frequency Enhanced Layer (FEL): Comp. K=0 means default version without LRA, 1 means the largest compression using K=1.

	Comp. K	()	1	6	4	4	1		
Metric		MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	
ETTh1	96 192 336 720	0.371 0.414 0.442 0.454	0.394 0.423 0.445 0.451	0.371 0.411 0.443 0.464	0.396 0.423 0.446 0.474	0.371 0.414 0.443 0.468	0.398 0.426 0.444 0.478	0.400 0.435 0.492 0.501	0.421 0.444 0.478 0.499	
Weather	96 192 336 720	0.199 0.228 0.267 0.319	0.262 0.288 0.323 0.361	0.199 0.225 0.266 0.314	0.263 0.285 0.321 0.355	0.197 0.226 0.263 0.315	0.262 0.285 0.314 0.354	0.198 0.225 0.264 0.318	0.263 0.286 0.316 0.357	
Par	ameter size	10	0%	1.95%		0.4	1%	0.10%		

Parameter saving using LRA

Improvement over sota

Table 4: Mode selection policy study for frequency enhanced layer. Lowest: select the lowest m frequency mode; Random: select m random frequency mode; Low random: select the 0.8 * m lowest frequency mode and 0.2 * m random high frequency mode.

Po	olicy	Lov	vest	Ran	dom	Low random		
Μ	etric	MSE	MAE	MSE	MAE	MSE	MAE	
Exchange	96	0.086	0.204	0.086	0.208	0.087	0.210	
	192	0.188	0.292	0.187	0.318	0.207	0.340	
	336	0.356	0.433	0.358	0.437	0.353	0.461	
	720	0.727	0.669	0.788	0.680	0.748	0.674	
Weather	96	0.199	0.262	0.197	0.256	0.196	0.254	
	192	0.228	0.288	0.234	0.300	0.234	0.301	
	336	0.267	0.323	0.266	0.319	0.263	0.316	
	720	0.319	0.361	0.317	0.356	0.316	0.354	

Lowest mode policy is the most stable one

Experiments

LPU serve as a general **boosting plugin** Block for neural layers.

Figure 6: LPU boosting effect. LPU can serve as a plug-in block in various backbones, e.g., FEL, MLP, LSTM, CNN, and Attention. Replacing LPU with a comparable-sized linear layer will always lead to degraded performance.

Methods		FEL		MLP		LSTM		lagged-LSTM		CNN		Attention	
Compare		LPU	Linear	LPU	Linear	LPU	Linear	LPU	Linear	LPU	Linear	LPU	Linear
ETTm1	96	0.030	+38%	0.034	+8.0%	0.049	+73%	0.093	-21%	0.116	-50%	0.243	-81%
	192	0.047	+9.5%	0.049	+30%	0.174	+32%	0.331	-48%	0.101	+20%	0.387	-86%
	336	0.063	+5.8%	0.061	+64%	0.119	+84%	0.214	-19%	0.122	+25%	1.652	+12%
	720	0.081	+1.4%	0.082	+62%	0.184	+32%	0.303	-6.5%	0.108	+13%	4.782	-61%
Electricity	96	0.213	+136%	0.431	+121%	0.291	+55.6%	0.739	-33%	0.310	+43%	0.805	+23%
	192	0.268	+32%	0.291	+239%	0.353	+17%	0.535	+15%	0.380	+12%	0.938	+14%
	336	0.307	+0.1%	0.296	+235%	0.436	-6.7%	0.517	+23%	0.359	+29%	2.043	-54%
	720	0.321	+37%	7 .339	+196%	0.636	-11%	0.492	+28%	0.424	+18%	9.115	+298%

Table 2: Boosting effect of LPU layer for common deep learning backbones: MLP, LSTM, CNN and Attention.'+' indicates degraded performance.

- Conclusion

- We propose a *Frequency improved Legendre Memory model (FiLM) architecture with a mixture of experts for robust multiscale time series feature extraction.*
- We redesign the *Legendre Projection Unit (LPU*) and make it a general tool for data representation that any time series forecasting model can exploit to solve the historical information preserving problem.
- We propose *Frequency Enhanced Layers (FEL)* that reduce dimensionality by a combination of Fourier analysis and low-rank matrix approximation to minimize the impact of noisy signals from time series and ease the overfitting problem. The effectiveness of this method is verified both theoretically and empirically.
- We conduct extensive experiments on six benchmark datasets across multiple domains (energy, traffic, economics, weather, and disease). Our empirical studies show that the proposed model improves the performance of state-of-the-art methods by 19.2% and 26.1% in multivariate and univariate forecasting, respectively. In addition, our empirical studies also reveal a dramatic improvement in computational efficiency through dimensionality reduction.

Thank You

https://arxiv.org/pdf/2205.08897.pdf

https://github.com/DAMO-DI-ML/NeurIPS2022-FiLM