
Variational inference via
Wasserstein gradient flows

Sinho Chewi

NeurIPS 2022



Collaborators

Francis Bach
(INRIA)

Silvère
Bonnabel

(UNC/ENSMP)

Marc Lambert
(INRIA)

Philippe Rigollet
(MIT)



Motivation from Bayesian Inference

Motivation: Large-scale Bayesian applications require computation
of summary statistics of the posterior π ∝ exp(−V ).

Two main computational paradigms:

• Markov chain Monte Carlo (mcmc)

• variational inference (vi)



Markov Chain Monte Carlo (mcmc)

The most basic mcmc algorithm discretizes the Langevin diffusion

dXt = −∇V (Xt) dt +
√

2 dBt

which has X∞ ∼ π.

Non-asymptotic guarantees: if V is strongly convex + smooth, we
approximately sample from π after O(d) queries to ∇V .



Variational Inference (vi)

Approximate π via:

π̂ ∈ arg min
p∈P

KL(p ‖ π)

Common choices for P:

• P = {product measures} (mean-field)

• P = {Gaussians} or {mixtures of Gaussians} (this talk)

What is the computational complexity?



Särkkä’s Heuristic

Let (πt)t≥0 be the law of the Langevin diffusion

πt = law(Xt) , dXt = −∇V (Xt) dt +
√

2 dBt .

Can we build a Gaussian approximation?

The mean mt = EXt and covariance Σt = covXt evolve via

ṁt = −E∇V (Xt) ,

Σ̇t = 2I − E[∇V (Xt)⊗ (Xt −mt) + (Xt −mt)⊗∇V (Xt)] .

We cannot compute the expectations.
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Särkkä’s Heuristic

Heuristic from Kalman filtering [Särkkä ’07]: replace Xt via
Yt ∼ pt = N (mt ,Σt).

ṁt = −E∇V (Yt) ,

Σ̇t = 2I − E[∇V (Yt)⊗ (Yt −mt) + (Yt −mt)⊗∇V (Yt)] .

This yields a Gaussian approximation (pt)t≥0.

What is its interpretation? Convergence as t →∞? At what rate?
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Wasserstein Gradient Flows

Theorem (Jordan, Kinderlehrer, Otto ’98): The law
(πt)t≥0 of the Langevin diffusion is a gradient flow of KL(·‖π)

on the Wasserstein space (P2(Rd),W2).

Theorem (Lambert, C., Bach, Bonnabel, Rigollet ’22):
The law (pt)t≥0 of Särkkä’s process is a gradient flow of

KL(· ‖ π) on the Wasserstein space (P2(Rd),W2) which is
constrained to lie in the space of Gaussians.

We call this the Bures–Wasserstein space, (BW(Rd),W2).
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KL(· ‖ π) on the Wasserstein space (P2(Rd),W2) which is
constrained to lie in the space of Gaussians.

Consequences:

• as t →∞, pt → π̂ := arg minBW(Rd ) KL(· ‖ π)
=⇒ solution to Gaussian vi

• use theory of gradient flows to obtain convergence rates
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Consequences: Continuous-Time Convergence

Theorem (Lambert, C., Bach, Bonnabel, Rigollet ’22):
If V is α-strongly convex and KL? := KL(π̂ ‖ π):

1. (α > 0)

W 2
2 (pt , π̂) ≤ exp(−2αt)W 2

2 (p0, π̂) ,

KL(pt ‖ π)− KL? ≤ exp(−2αt) {KL(p0 ‖ π)− KL?} .

3. (α = 0)

KL(pt ‖ π)− KL? ≤
1

2t
W 2

2 (p0, π̂) .



Consequences: Discretization

Theorem (Lambert, C., Bach, Bonnabel, Rigollet ’22):
Assume 0 ≺ αI � ∇2V � I . For the iterates (pk)k∈N of
Bures–Wasserstein SGD with step size 0 < h ≤ α

6 ,

EW 2
2 (pk , π̂) ≤ exp(−αkh)W 2

2 (p0, π̂) +
21dh

α2
.

=⇒ Õ(d) query complexity, akin to mcmc



Mixtures of Gaussians

There is a correspondence between measures over BW(Rd) and
mixtures of Gaussians:

µ︸︷︷︸
mixing measure

↔ pµ :=

∫
p dµ(p) .

Consequently, {mixtures of Gaussians} ∼= P2(BW(Rd)).

What is the gradient flow of µ 7→ KL(pµ ‖ π) over this space?
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Gradient Flow for Mixtures of Gaussians

Theorem (Lambert, C., Bach, Bonnabel, Rigollet): The
gradient flow of µ 7→ KL(pµ ‖ π) over P2(BW(Rd)) can be
implemented as an interacting particle system: for i ∈ [N],

ṁ
(i)
t = −E∇ ln

pµt
π

(Y
(i)
t ) ,

Σ̇
(i)
t = −E∇2 ln

pµt
π

(Y
(i)
t ) Σ

(i)
t − Σ

(i)
t E∇2 ln

pµt
π

(Y
(i)
t ) ,

where Y
(i)
t ∼ N (m

(i)
t ,Σ

(i)
t ) and µt = 1

N

∑N
i=1 δ(m

(i)
t ,Σ

(i)
t )

.



Mixture of Gaussians vi

See our paper for an algorithm with changing weights based on
Wasserstein–Fisher–Rao geometry.
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Conclusion

variational
inference (vi)

Wasserstein
gradient flows

Kalman
filtering

• We obtain an algorithm for Gaussian vi with quantitative
computational guarantees.

• We propose algorithms for mixture of Gaussians vi based on
Wasserstein gradient flows.
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