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Motivation from Bayesian Inference

Motivation: Large-scale Bayesian applications require computation
of summary statistics of the posterior m o exp(— V).

Two main computational paradigms:
e Markov chain Monte Carlo (MCMC)

e variational inference (V1)

mmm  Massachusetts
I I Institute of

Technology



Markov Chain Monte Carlo (MCMC)

The most basic MCnC algorithm discretizes the Langevin diffusion
dX; = =V V(X,)dt + V2 dB;

which has X

Non-asymptotic guarantees: if V is strongly convex + smooth, we
approximately sample from 7 after O(d) queries to VV.
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Variational Inference (V1)

Approximate 7 via:

7 € argminKL(p || 7)
peEP

Common choices for P:
e P = {product measures} (mean-field)

e P = {Gaussians} or {mixtures of Gaussians} (this talk)

What is the computational complexity?
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Sarkka's Heuristic

Let (m¢),>q be the law of the Langevin diffusion

e =law(X;),  dXi = -V V(X;)dt+V2dB;.

Can we build a Gaussian approximation?
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Sarkka's Heuristic

Let (m¢),>q be the law of the Langevin diffusion

e =law(X;),  dXi = -V V(X;)dt+V2dB;.

Can we build a ?

The mean m; = E X; and covariance ¥ ; = cov X; evolve via

my=—-EVV(X),
Y, =2l —E[VV(X)) @ (Xe — m¢) + (X — me) @ VV(X)].
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Sarkka's Heuristic

Let (m¢),>q be the law of the Langevin diffusion

e =law(X;),  dXi = -V V(X;)dt+V2dB;.

Can we build a Gaussian approximation?

The mean m; = E X; and covariance ¥ ; = cov X; evolve via

my=—-EVV(X),
Y, =2l —E[VV(X)) @ (Xe — m¢) + (X — me) @ VV(X)].

We cannot compute the expectations.

IIIII |nt of
Technology



Sarkka's Heuristic

Heuristic from Kalman filtering [Sarkka '07]: replace X; via

my=—-EVV(Y,),
Yo =2l —E[VV(Y)® (Y. —m)+ (Ve — m) @ VV(V)].

This yields a Gaussian approximation
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Sarkka's Heuristic

Heuristic from Kalman filtering [Sarkka '07]: replace X; via
Yl’ ~ Pt — ,\‘(mt. Zt)

my=—-EVV(Y,),
Y, =21 —E[VV(Y.) @ (Y —m)+ (Vi — my) @ VV(Y))].

This yields a Gaussian approximation (Pt)rgo-

What is its interpretation? Convergence as t — co? At what rate?
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Wasserstein Gradient Flows

Theorem (Jordan, Kinderlehrer, Otto ’98): The law
(¢) >0 of the Langevin diffusion is a gradient flow of KL(- || )
on the Wasserstein space (P2(R?), Wh).
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Wasserstein Gradient Flows

Theorem (Jordan, Kinderlehrer, Otto ’98): The law
(¢) >0 of the Langevin diffusion is a gradient flow of KL(- || )

on the Wasserstein space (P2(R?), Wh).

Theorem (Lambert, C., Bach, Bonnabel, Rigollet '22):
The law (pt),> of Sarkka's process is a gradient flow of
KL(- || ) on the Wasserstein space (P2(R9), W>) which is

constrained to lie in the space of Gaussians.
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Wasserstein Gradient Flows

Theorem (Jordan, Kinderlehrer, Otto ’98): The law
(¢) >0 of the Langevin diffusion is a gradient flow of KL(- || )

on the Wasserstein space (P2(R?), Wh).

Theorem (Lambert, C., Bach, Bonnabel, Rigollet '22):
The law (pt),> of Sarkka's process is a gradient flow of
KL(- || ) on the Wasserstein space (P2(R9), W>) which is

constrained to lie in the space of Gaussians.

We call this the Bures—Wasserstein space, (BW(R?), W»).
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Sarkka's Process as a Gradient Flow

Theorem (Lambert, C., Bach, Bonnabel, Rigollet '22):
The law (pt),~q of Sarkka's process is a gradient flow of
KL(- || 7) on the Wasserstein space (P2(R9), W>) which is
constrained to lie in the space of Gaussians.

Consequences:

® ast — 00, pr — 7 = arg mingyrs) KL(- || 7)
— solution to Gaussian VI
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Sarkka's Process as a Gradient Flow

Theorem (Lambert, C., Bach, Bonnabel, Rigollet '22):
The law (pt),~q of Sarkka's process is a gradient flow of
KL(- || 7) on the Wasserstein space (P2(R9), W>) which is
constrained to lie in the space of Gaussians.

Consequences:

® ast — 00, pr — 7 = arg mingyrs) KL(- || 7)
— solution to Gaussian VI

e use theory of gradient flows to obtain convergence rates
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Consequences: Continuous-Time Convergence

Theorem (Lambert, C., Bach, Bonnabel, Rigollet '22):
If V is a-strongly convex and KL, = KL(# || 7):

1. (a>0)

W3 (pe, ) < exp(—2at) Wi (po, 7),
KL(p: || m) — KLy < exp(—2at) {KL(po || 7) — KL, }.

3. («=0)

KL(p: || m) — KL, < 2— W5 (po, 7).
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Consequences: Discretization

Theorem (Lambert, C., Bach, Bonnabel, Rigollet '22):
Assume 0 < ol < V2V =< [. For the iterates (P)ken Of
Bures—Wasserstein SGD with step size 0 < h < Z,

21dh
E W2 (py, 7) < exp(—akh) W2 (pg, 7 )+—.

— 0(d) query complexity, akin to MCMC
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Mixtures of Gaussians

There is a correspondence between measures over BW(R9) and
mixtures of Gaussians:

ju < Pu = / pdu(p) .
~—

mixing measure
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Mixtures of Gaussians

There is a correspondence between measures over BW(R?) and
mixtures of Gaussians:

ju < Pu = / pdu(p) .
~—

mixing measure

Consequently, {mixtures of Gaussians} = P,(BW(RY)).
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Mixtures of Gaussians

There is a correspondence between measures over BW(R?) and
mixtures of Gaussians:

ju < Pu = / pdu(p) .
~—

mixing measure
Consequently, {mixtures of Gaussians} = P,(BW(RY)).
What is the gradient flow of 1 — KL(p,, || 7) over this space?
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Gradient Flow for Mixtures of Gaussians

Theorem (Lambert, C., Bach, Bonnabel, Rigollet): The
gradient flow of y — KL(p, || 7) over 7-(BW(?)) can be
implemented as an interacting particle system: for i € [N],

) = —EVIn Py,
Y

50 = —Ev2in 2 (vD) 50 _ s O w2 1 Pee vy
m ™

where Yt(i) ~ ,’\'(nvg").Z(t")) and /i, = %Z,N 1 (S(mE’).Z‘;”)'
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Mixture of Gaussians VI

See our paper for an algorithm with changing weights based on
Wasserstein—Fisher—Rao geometry.
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Conclusion

Wasserstein
gradient flows

variational
inference (V1)

Kalman
filtering

e We obtain an algorithm for Gaussian vI with quantitative
computational guarantees.

e We propose algorithms for mixture of Gaussians VI based on
Wasserstein gradient flows.
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