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Memory between data samples is ubiquitous

® Imaging, meteorology, health care, finance, social science ...
Statistical inference algorithms from samples with memory
are a developed topic

® Baum-Welch, various message-passing algorithms...
But: Memory improves the performance of statistical
inference

® To what extent?

® How it interacts with the number of samples? parameters

dimension? signal-to-noise?

In this talk: estimation in a basic Gaussian model with
memory
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® Models with memory:
® [YBW15] analyzed Baum-Welch for Gaussian HMM
® Not minimax optimal in the number of samples, dimension,
noise level, and the amount of memory

® Minimax error rates for linear regression with Markovian
covariates [Bre+20]

® Linear and logistic regression with general network
dependencies [DDP19; Kan+21]

® Learnability and generalization bounds [Dag+19]
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Problem formulation — Statistical model

A binary Markov chain

Si_1, w.p. 1—¢ .
, 1=1,....n

P[So=1]=1/2, Si—{

—-S;i—1, wW.p.d

An unknown mean parameter 6, € R? with ||6,| =t
Observations

X;=S8;0.+2;, ZPNOI), i=1,..n

Local minimax rate: For d > 2

M. d5.0):= i sup & [min{[0. — 00X 0. + 00|}
n t

Extremes are solved:

® Gaussian location model (G
® Gaussian mixture model (G

0 =0); Folklore
=3

LM, ,
MM, ); [WZ19)
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The effect of memory

Global minimax rate d < don ) ((%) ! 4)
Minimal SNR for parametric rate d < on t>0
Transition to high-dim d=dn
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The case of unknown o

® Estimation of § under an approximation 6y
® We propose a MoM estimator, and upper bound its loss
® The importance of accurate knowledge of 6,
® Impossibility result for the matched case 0y = 0,
e Estimation of 8, with an unknown &
® We propose a three-step algorithm
® We prove that it adaptively achieves minimax rates of
known 4 at some regimes
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