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Motivation

• Memory between data samples is ubiquitous

• Imaging, meteorology, health care, finance, social science ...
• Statistical inference algorithms from samples with memory

are a developed topic

• Baum-Welch, various message-passing algorithms...

• But: Memory improves the performance of statistical
inference

• To what extent?
• How it interacts with the number of samples? parameters

dimension? signal-to-noise?

• In this talk: estimation in a basic Gaussian model with
memory
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Related work – Gaussian mixture model

• Many papers on estimation in Gaussian mixture models
(memoryless model) via the method-of-moments (MoM)
or Expectation-maximization (EM)

• Models with memory:

• [YBW15] analyzed Baum-Welch for Gaussian HMM

• Not minimax optimal in the number of samples, dimension,
noise level, and the amount of memory

• Minimax error rates for linear regression with Markovian
covariates [Bre+20]

• Linear and logistic regression with general network
dependencies [DDP19; Kan+21]

• Learnability and generalization bounds [Dag+19]
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Problem formulation – Statistical model

• A binary Markov chain

P[S0 = 1] = 1/2, Si =
{

Si−1, w.p. 1− δ

−Si−1, w.p. δ
, i = 1, . . . ,n

• An unknown mean parameter θ∗ ∈ Rd with ∥θ∗∥ = t

• Observations

Xi = Si ·θ∗ +Zi, Zi
IID∼ N(0, Id), i = 1, . . . ,n

• Local minimax rate: For d ≥ 2

M(n,d,δ, t) := inf
θ̂(Xn

1 )
sup

∥θ∗∥=t
E

[
min{∥θ∗ − θ̂(Xn

1 )∥,∥θ∗ + θ̂(Xn
1 )∥}

]
• Extremes are solved:

• Gaussian location model (GLM, δ = 0); Folklore
• Gaussian mixture model (GMM, δ = 1

2 ); [WZ19]
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Minimax rates – Main result
[This work] Up to log-factors:

• For 2 ≤ d ≤ δn

M(n,d,δ, t) ≍


t, t ≤

(
δd
n

)1/4

1
t

√
δd
n ,

(
δd
n

)1/4
≤ t ≤

√
δ√

d
n , t ≥

√
δ

• For d ≥ δn, M(n,d,δ, t) ≍ MGLM(n,d,t)
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The effect of memory

Global minimax rate d ≲ δn Θ
((

δd
n

)1/4)
Minimal SNR for parametric rate d ≲ δn t ≳

√
δ

Transition to high-dim d ≍ δn
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The case of unknown δ

• Estimation of δ under an approximation θ♯

• We propose a MoM estimator, and upper bound its loss
• The importance of accurate knowledge of θ∗
• Impossibility result for the matched case θ♯ = θ∗

• Estimation of θ∗ with an unknown δ

• We propose a three-step algorithm
• We prove that it adaptively achieves minimax rates of

known δ at some regimes
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