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Ambiguity in perception demands probabilistic processing
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Probabilistic computations need to be efficient in high-dimension



Sampling-based probabilistic inference in neural circuits
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Fiser et al., TICS, 2010; Hennequin et al., NeurIPS 2014

A simple method to sample a distribution 𝑝𝑝 𝐳𝐳 ∝ exp −𝑈𝑈 𝐳𝐳 in a rate 
network is using Langevin dynamics 

𝑑𝑑𝐳𝐳 𝑡𝑡 = −𝛁𝛁𝑈𝑈 𝐳𝐳 𝑑𝑑𝑑𝑑 + 2 𝑑𝑑𝐖𝐖(𝑡𝑡)

For a Gaussian 𝐳𝐳 ∼ 𝒩𝒩 𝟎𝟎,𝚺𝚺 , this yields the linear dynamics

𝑑𝑑𝐳𝐳 𝑡𝑡 = −𝚺𝚺−1𝐳𝐳 𝑑𝑑𝑑𝑑 + 2 𝑑𝑑𝐖𝐖(𝑡𝑡)



Sampling-based inference in spiking neural networks

Boerlin et al., PLoS Comp. Bio., 2013, Savin & Denève, NeurIPS, 2014
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However, this approach has only been used to sample 2-dimensional Gaussians and has not been shown to 
scale to higher-dimensional distributions. 



The “complete recipe” for stochastic gradient MCMC
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Ma et al., NeurIPS, 2015

Naïve Langevin sampling becomes slow in high dimensions

Ma et al. proposed the ‘complete recipe’ for stochastic gradient MCMC, which shows that all diffusions that sample 𝑝𝑝 𝐳𝐳 ∝
exp −𝑈𝑈 𝐳𝐳 can be written as

𝑑𝑑𝐳𝐳 𝑡𝑡 = − 𝐃𝐃 𝐳𝐳 + 𝐒𝐒 𝐳𝐳 𝛁𝛁𝑈𝑈 𝒛𝒛 + div 𝐃𝐃 𝐳𝐳 + 𝐒𝐒 𝐳𝐳 𝑑𝑑𝑑𝑑 + 2𝐃𝐃(𝐳𝐳) 𝑑𝑑𝐖𝐖(𝑡𝑡)

for a symmetric matrix field 𝐃𝐃 and skew-symmetric matrix field 𝐒𝐒. 

This captures many accelerated algorithms, including Riemannian and Hamiltonian dynamics

We can leverage these principles to achieve fast sampling in spiking networks



Fast sampling in a network approximating Langevin sampling
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With naïve geometry, the Savin-Denève network cannot sample from strongly-correlated distributions

But, with natural gradients, it can sample accurately even in high dimensions

Here, we sample from a 10-dimensional equicorrelated Gaussian with 𝜌𝜌 = 0.75



Fast sampling in a network with probabilistic spiking
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We can also leverage these principles to achieve fast sampling in a network with probabilistic spiking, 
derived from Metropolis-Hastings sampling. 

Here, spiking is suppressed entirely with naïve geometry



Fast sampling in a network with probabilistic spiking
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Conclusion
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We show that the “complete recipe” enables fast sampling in spiking neural networks simulating 
Langevin sampling with noisy voltage dynamics and sampling using probabilistic spike rules 

In our paper, we provide a unifying derivation of spiking networks designed to sample from Gaussian 
distributions using probabilistic rules, of which the efficient balanced network is a limit.

𝐕̇𝐕 𝑡𝑡 = −
1
𝜏𝜏𝑚𝑚

𝐕𝐕 𝑡𝑡 − 𝚪𝚪⊤𝚺𝚺−1𝚪𝚪𝚪𝚪 𝑡𝑡 + 𝚪𝚪⊤𝚺𝚺−1 𝝁̇𝝁 𝑡𝑡 +
1
𝜏𝜏𝑚𝑚

𝝁𝝁 𝑡𝑡
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