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Ambiguity in perception demands probabilistic processing
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Probabilistic computations need to be efficient in high-dimension




Sampling-based probabilistic inference in neural circuits
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A simple method to sample a distribution p(z) < exp[—U(z)] in a rate
network is using Langevin dynamics

dz(t) = —VU(z) dt + V2 dW(t)
For a Gaussian z ~ V' (0, X), this yields the linear dynamics

dz(t) = =271z dt + V2 dW(t)

Euclidean space




Sampling-based inference in spiking neural networks

features input spiking network prediction
0 X 0
input weights decoding weights

However, this approach has only been used to sample 2-dimensional Gaussians and has not been shown to
scale to higher-dimensional distributions.

Boerlin et al., PLoS Comp. Bio., 2013, Savin & Denéve, NeurlPS, 2014



The “complete recipe” for stochastic gradient MCMC

Naive Langevin sampling becomes slow in high dimensions

Ma et al. proposed the ‘complete recipe’ for stochastic gradient MCMC, which shows that all diffusions that sample p(z) «
exp[—U(z)] can be written as

dz(t) = {—[D(z) + S(z)]VU(2) + div[D(z) + S(z)]} dt + {/2D(z) dW(t)
for a symmetric matrix field D and skew-symmetric matrix field S.

This captures many accelerated algorithms, including Riemannian and Hamiltonian dynamics
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We can leverage these principles to achieve fast sampling in spiking networks

Ma et al., NeurlPS, 2015



Fast sampling in a network approximating Langevin sampling

With naive geometry, the Savin-Denéve network cannot sample from strongly-correlated distributions

But, with natural gradients, it can sample accurately even in high dimensions

©
[«
=y
o

IS
Mean
w
Variance
W2 distance

o
(¢)]

—naive
—natural

Moving average of 6.

o

L\ o
1 2 Q 95 % 19 A Q b 5 145 A
time (s) o °'p ot 042 02 ol N N s-p N

_\
S

-

W2 distance

Mean
w
Variance
N
o

relative frequency
S
&

_\
S
S

o - 0
0 01 02 2 4 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 64

181 (s) n n n
P p p

Here, we sample from a 10-dimensional equicorrelated Gaussian with p = 0.75



Fast sampling in a network with probabillistic spiking

We can also leverage these principles to achieve fast sampling in a network with probabilistic spiking,

derived from Metropolis-Hastings sampling.
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Here, spiking is suppressed entirely with naive geometry
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Fast sampling in a network with probabillistic spiking
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Conclusion

We show that the “complete recipe” enables fast sampling in spiking neural networks simulating
Langevin sampling with noisy voltage dynamics and sampling using probabilistic spike rules
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In our paper, we provide a unifying derivation of spiking networks designed to sample from Gaussian
distributions using probabilistic rules, of which the efficient balanced network is a limit.

V(t) = - %V(t) —T''2 To(t) +IT'x? (ﬂ(t) + Tiu(t))
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