NeurIPS 2022

A Unified Model for Multi-class Anomaly Detection

Zhiyuan You · Lei Cui · Yujun Shen · Kai Yang · Xin Lu · Yu Zheng · Xinyi Le

Existing Separate Setting V.S. Our Unified Setting for Anomaly Detection (AD)

- Background of Anomaly Detection (AD)
 - 1. A common solution for AD is to identify anomalies as outliers of the normal distribution.
 - 2. A separate model is better to fit a compact boundary for the normal distribution. (Fig. 2)
- Existing Separate Setting

Train *separate* models for different classes of objects. (Fig. 1)

- Drawbacks of the Separate Setting
 - 1. *Memory-consuming* with a large number of classes.
 - **2.** Uncongenial to the scenarios where the normal samples have some intra-class diversity.

- → Train on Normal Data
- Infer to Detect Anomalies

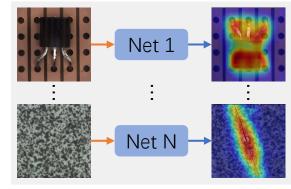


Fig. 1. Separate setting.

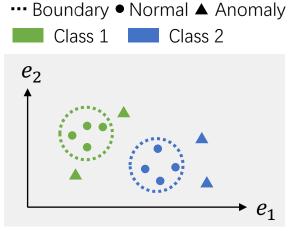


Fig. 2. Compact boundary of the normal distribution.

Existing Separate Setting V.S. Our Unified Setting for Anomaly Detection (AD)

• Our Unified Setting

Train a *unified* model for all classes of objects. (Fig. 3 & 4)

- Advantages of the Unified Setting
 - 1. *Memory-saving* with a unified model for various classes.
 - **2.** *More practical* since the industrial normal samples usually cover a range of categories.
 - **3. Easy** to prepare the training data w/o the class labels.
- Difficulties of the Unified Setting

Difficult to capture the distribution of all classes simultaneously with only one model.

→ Train on Normal Data

Infer to Detect Anomalies

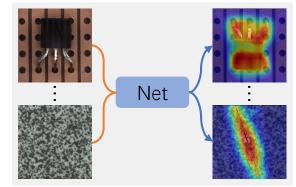


Fig. 3. Unified setting.

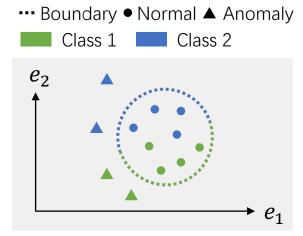


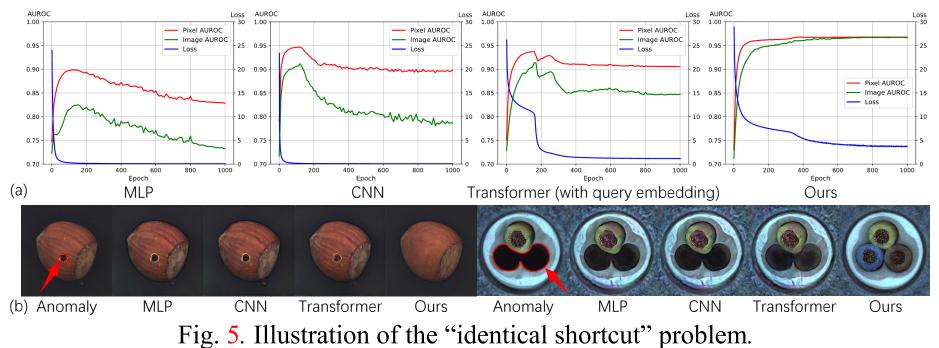
Fig. 4. Unified boundary of all normal distribution.

"Identical Shortcut" Problem in Reconstruction-based Methods

Analysis Method

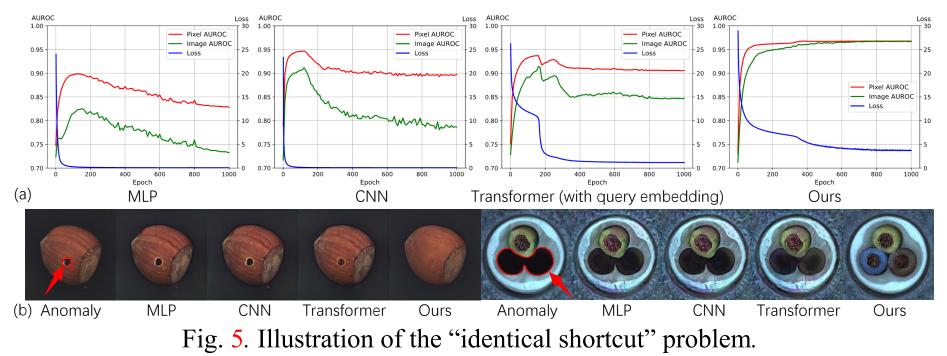
Based on the feature reconstruction paradigm, we test 3 reconstruction nets (*MLP, CNN, & Transformer*).

- Analysis Results
 - **1. Observation**. During training, the loss becomes quite small (blue in Fig. 5a), but the performance (red for localization & green for detection in Fig. 5a) drops dramatically after reaching the peak.
 - 2. Reason. The 3 models all suffer from the "identical shortcut" problem (visualized in Fig. 5b), which reconstructs both normal samples and anomalies well.



"Identical Shortcut" Problem in Reconstruction-based Methods

- The "Identical Shortcut" Problem in Transformer Is Slighter
 - 1. Loss. The loss of transformer could not reach near 0 (blue in Fig. 5a).
 - **2.** *Performance*. The performance (red for localization & green for detection in Fig. 5a) drop of *transformer* is smaller than *MLP* & *CNN*.
- Motivation
 - 1. Analyze why transformer is better than MLP & CNN.
 - 2. Improve transformer to fully prevent the "identical shortcut" problem.



Analysis of *Transformer*

 x^+, x^- : representations of normal samples and anomalies, y: reconstructed outputs.

• Fully connected layer in MLP

 $y = wx^+ + b$ *MSE Loss* $(y \to x^+)$ regresses $w \to I$ (Identity Matrix), $b \to 0$. Then, if input x^- , the reconstruction still successes by $y = x^-$, forming the "identical shortcut".

• Convolutional layer in CNN

 1×1 convolutional layer equals fully connected layer, while $n \times n$ convolutional layer could complete whatever fully connected layer could. It also could form the "identical shortcut".

• Attention layer (with query embedding, q) in *Transformer*

 $y = \operatorname{softmax}\left(\frac{qx^{+}}{\sqrt{C}}\right)x^{+}$ *MSE Loss* $(y \to x^{+})$ regresses $\operatorname{softmax}\left(\frac{qx^{+}}{\sqrt{C}}\right) \to I$ (Identity Matrix). Thus, q (query embedding) should be highly related to x^{+} . Then, if input x^{-} , the reconstruction fails, making $x^{+} \& x^{-}$ distinguishable.

Attention layer (with query embedding) is highly important in preventing the "identical shortcut".

Improvements of Transformer: 1) Layer-wise Query Embedding

• Weakness of Transformer

Attention layer (with query embedding) is useful, but it is *seldom* used, *i.e.*, ViT-like nets do not use it, while DETR-like nets only use it in the 1st decoder layer.

• Improvement 1): Layer-wise Query Embedding

We add query embedding in *every* decoder layer, *i.e.*, *layer-wise* query embedding, to increase its ability in preventing the "identical shortcut" (Fig. 6).

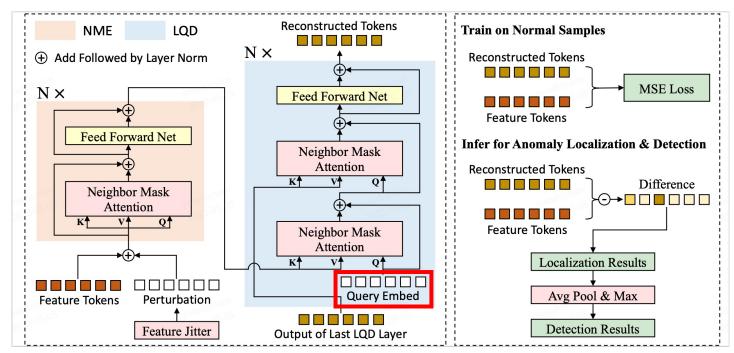


Fig. 6. Illustration of our model. The layer-wise query embedding is circled by **red**.

Improvements of Transformer: 2) Neighbor Masked Attention

• Weakness of Transformer

Full attention contributes to the "identical shortcut" since one token is allowed to use its own information, which may cause that the model *directly copies* inputs as outputs.

• Improvement 2): Neighbor Masked Attention

We mask some neighbor tokens in the attention layer, named *neighbor masked* attention, to prevent the information leak from inputs to outputs (Fig. 7).

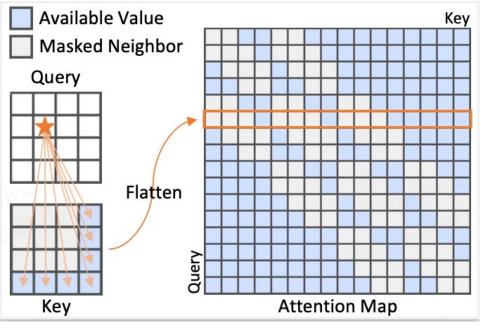


Fig. 7. Neighbor masked attention.

Improvements of *Transformer*: 3) Feature Jittering

• Motivation

De-noising auto-encoders are developed from auto-encoders by *adding noise* to inputs, leading the model learn by de-noising tasks.

Improvement 3): Feature Jittering

We add noise to input features, converting the task *from reconstruction to de-noising*, leading the model to learn normal distribution by removing noise (Fig. 8).

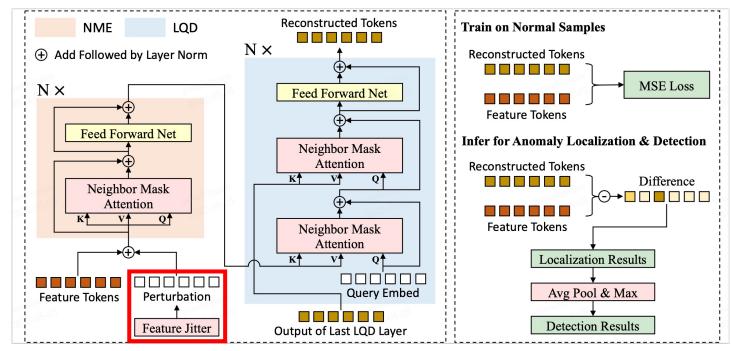


Fig. 8. Illustration of our model. The feature jittering is circled by red.

Results of Anomaly Detection and Localization on MVTec-AD

In the unified setting of MVTec-AD, we significantly outperform the best baseline by 8.4% & 7.3% with anomaly detection and localization tasks, respectively.

evaluated under unified case / separate case. Our method is run with 5 random seeds.

Table 1: Anomaly detection results with AUROC metric on MVTec-AD [3]. All methods are Table 2: Anomaly localization results with AUROC metric on MVTec-AD [3]. All methods are evaluated under unified case / separate case. Our method is run with 5 random seeds.

									1								
	Category	US [5]	PSVDD [46]	PaDiM [8]	CutPaste [23]	MKD [36]	DRAEM [50]	Ours		Category	US [5]	PSVDD [46]	PaDiM [8]	FCDD [26]	MKD [36]	DRAEM [50]	Ours
	Bottle	84.0 / 99.0	85.5 / 98.6	97.9 / 99.9	67.9 / 98.2	98.7 / 99.4	97.5 / 99.2	99.7 ± 0.04 / 100		Bottle	67.9 / 97.8	86.7 / 98.1	96.1 / 98.2	56.0 / 97	91.8 / 96.3	87.6 / 99.1	$ 98.1\pm0.04$ / 98.1
	Cable	60.0 / 86.2	64.4 / 90.3	70.9 / 92.7	69.2 / 81.2	78.2 / 89.2	57.8 / 91.8	95.2 ± 0.84 / 97.6	Obj	Cable	78.3 / 91.9	62.2 / 96.8	81.0 / 96.7	64.1/90	89.3 / 82.4	71.3 / 94.7	97.3 ± 0.10 / 96.8
	Capsule	57.6 / 86.1	61.3 / 76.7	73.4 / 91.3	63.0/98.2	68.3 / 80.5	65.3 / 98.5	86.9 ± 0.73 / 85.3		Capsule	85.5 / 96.8	83.1 / 95.8	96.9 / 98.6	67.6 / 93	88.3 / 95.9	50.5 / 94.3	98.5 ± 0.01 / 97.9
	Hazelnut	95.8 / 93.1	83.9 / 92.0	85.5 / 92.0	80.9 / 98.3	97.1 / 98.4	93.7 / 100	99.8 ± 0.10 / 99.9		Hazelnut	93.7 / 98.2	97.4 / 97.5	96.3 / 98.1	79.3 / 95	91.2 / 94.6	96.9 / 99.7	98.1 ± 0.10 / 98.8
~	Metal Nut	62.7 / 82.0	80.9 / 94.0	88.0 / 98.7	60.0 / 99.9	64.9 / 73.6	72.8 / 98.7	99.2 ± 0.09 / 99.0		Metal Nut	76.6 / 97.2	96.0 / 98.0	84.8 / 97.3	57.5/94	64.2 / 86.4	62.2 / 99.5	94.8 ± 0.09 / 95.7
g	Pill	56.1 / 87.9	89.4 / 86.1	68.8 / 93.3	71.4 / 94.9	79.7 / 82.7	82.2 / 98.9	93.7 ± 0.65 / 88.3		Pill	80.3 / 96.5	96.5 / 95.1	87.7 / 95.7	65.9 / 81	69.7 / 89.6	94.4 / 97.6	95.0 ± 0.16 / 95.1
ect	Screw	66.9 / 54.9	80.9 / 81.3	56.9 / 85.8	85.2 / 88.7	75.6/83.3	92.0 / 93.9	87.5 ± 0.57 / 91.9		Screw	90.8 / 97.4	74.3 / 95.7	94.1 / 98.4	67.2 / 86	92.1 / 96.0	95.5 / 97.6	98.3 ± 0.08 / 97.4
(-T)	Toothbrush	a 57.8 / 95.3	99.4 / 100	95.3 / 96.1	63.9 / 99.4	75.3 / 92.2	90.6 / 100	94.2 ± 0.20 / 95.0		Toothbrush	86.9 / 97.9	98.0 / 98.1	95.6 / 98.8	60.8 / 94	88.9 / 96.1	97.7 / 98.1	98.4 ± 0.03 / 97.8
	Transistor	61.0 / 81.8	77.5 / 91.5	86.6 / 97.4	57.9 / 96.1	73.4 / 85.6	74.8 / 93.1	99.8 ± 0.09 / 100		Transistor	68.3 / 73.7	78.5 / 97.0	92.3 / 97.6	54.2/88	71.7 / 76.5	64.5 / 90.9	97.9 ± 0.19 / 98.7
	Zipper	78.6 / 91.9	77.8 / 97.9	79.7 / 90.3	93.5 / 99.9	87.4 / 93.2	98.8 / 100	95.8 ± 0.51 / 96.7		Zipper	84.2 / 95.6	95.1 / 95.1	94.8 / 98.4	63.0/92	86.1 / 93.9	98.3 / 98.8	96.8 ± 0.24 / 96.0
	Mean	68.1 / 85.8	80.1 / 90.8	80.3 / 93.8	71.3 / 95.5	79.8 / 87.8	82.6 / 97.4	$\left \textbf{95.2} \pm \textbf{0.11} ight $ 95.4		Mean	81.2/94.3	86.8 / 96.7	92.0 / 97.8	63.6 / 91	83.3 / 90.8	81.9 / 97.0	$ig 97.3 \pm 0.02$ / 97.2
	Carpet	86.6/91.6	63.3 / 92.9	93.8 / 99.8	93.6 / 93.9	69.8 / 79.3	98.0 / 97.0	99.8 ± 0.02 / 99.9		Carpet	88.7 / 93.5	78.6/92.6	97.6 / 99.0	68.6/96	95.5/95.6	98.6 / 95.5	$ 98.5 \pm 0.01$ / 98.0
	Grid	69.2 / 81.0	66.0 / 94.6	73.9 / 96.7	93.2 / 100	83.8 / 78.0	99.3 / 99.9	98.2 ± 0.26 / 98.5		Grid	64.5 / 89.9	70.8 / 96.2	71.0 / 97.1	65.8 / 91	82.3 / 91.8	98.7 / 99.7	96.5 ± 0.04 / 94.6
Te	Leather	97.2 / 88.2	60.8 / 90.9	99.9 / 100	93.4 / 100	93.6 / 95.1	98.7 / 100	100 ± 0.00 / 100	Te	Leather	95.4 / 97.8	93.5 / 97.4	84.8 / 99.0	66.3 / 98	96.7 / 98.1	97.3 / 98.6	98.8 ± 0.03 / 98.3
xture	Tile	93.7 / 99.1	88.3 / 97.8	93.3 / 98.1	88.6 / 94.6	89.5 / 91.6	99.8 / 99.6	99.3 ± 0.14 / 99.0	xture	Tile	82.7 / 92.5	92.1 / 91.4	80.5 / 94.1	59.3 / 91	85.3 / 82.8	98.0 / 99.2	91.8 ± 0.10 / 91.8
	Wood	90.6 / 97.7	72.1 / 96.5	98.4 / 99.2	80.4 / 99.1	93.4 / 94.3	99.8 / 99.1	98.6 ± 0.08 / 97.9		Wood	83.3 / 92.1	80.7 / 90.8	89.1 / 94.1	53.3 / 88	80.5 / 84.8	96.0 / 96.4	93.2 ± 0.08 / 93.4
	Mean	87.4 / 91.5	70.1 / 94.5	91.9 / 98.8	89.8 / 97.5	86.0 / 87.7	99.1 / 99.1	$ig 99.2 \pm 0.07$ / 99.1		Mean	82.9/93.2	83.1 / 93.7	84.6 / 96.7	62.7 / 93	88.0 / 90.6	97.7 / 97.9	$\left 95.8\pm0.04\text{/}95.3\right.$
	Mean	74.5 / 87.7	76.8 / 92.1	84.2 / 95.5	77.5 / 96.1	81.9 / 87.8	88.1 / 98.0	$ig 96.5 \pm 0.08$ / 96.6		Mean	81.8 / 93.9	85.6 / 95.7	89.5 / 97.4	63.3 / 92	84.9 / 90.7	87.2 / 97.3	$ig 96.8 \pm 0.02$ / 96.6
												9.6			100		110-

Qualitative Results on MVTec-AD

We reconstruct anomalies to *their corresponding normal samples*.

In Fig. 9, for each example, from left to right:

normal sample (as reference), anomaly, our reconstruction, ground-truth, & our predicted anomaly map.

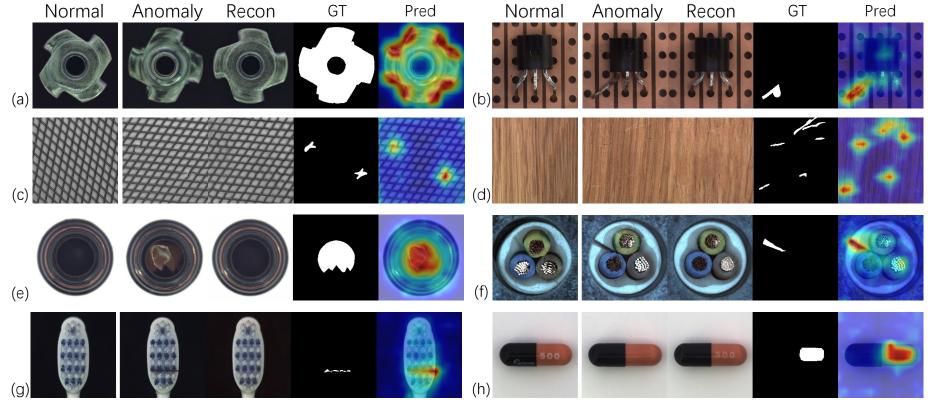


Fig. 9. Qualitative results.

Thanks