

DENSE: Data-Free One-Shot Federated Learning

Jie Zhang¹, Chen Chen¹, Bo Li², Lingjuan Lyu³, Shuang Wu², Shouhong Ding², Chunhua Shen¹, Chao Wu¹ ¹Zhejiang University

²Youtu Lab, Tencent

³Sony Al

Motivation

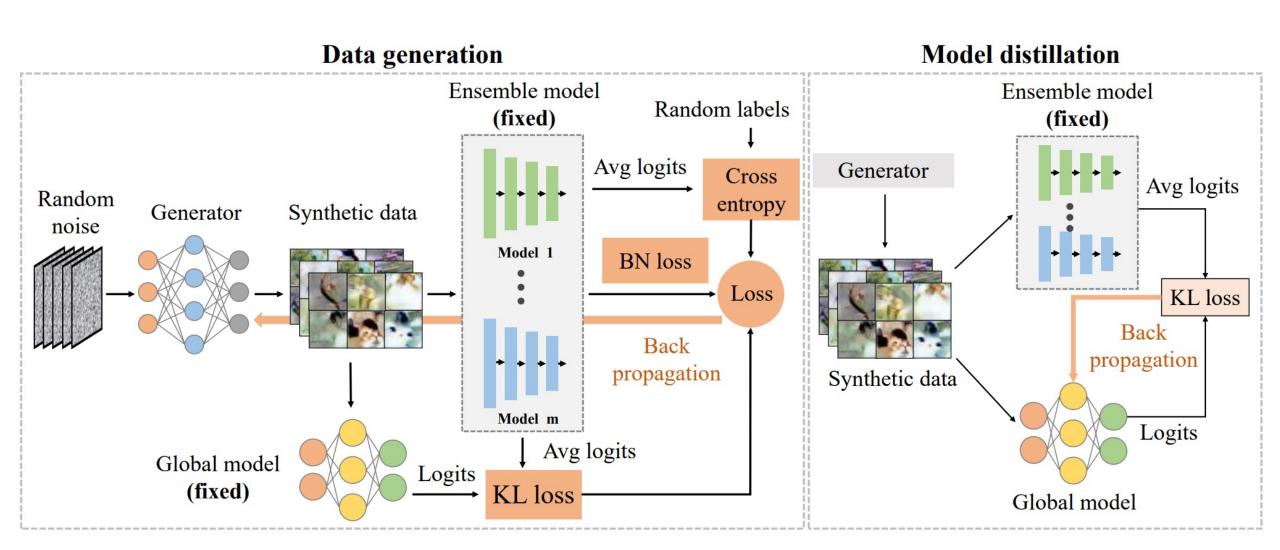
- ➤ The original FL framework requires participants to communicate frequently with the central server. In real-world FL, such high communication cost may be intolerable and impractical.
- > Frequent communication poses a high risk of being attacked.
- Eexisting one-shot FL methods are mostly impractical or face inherent limitations, e.g., a public dataset is required, clients' models are homogeneous, and additional data/model information need to be uploaded.

Contribution

The setting of DENSE is practical in the following aspects.

- > DENSE requires no additional information (except the model) parameters) to be transferred between clients and the server
- > DENSE does not require any auxiliary dataset for training
- > DENSE considers model heterogeneity, i.e., different clients can have different model architectures

Overview Framework of Our Method



Formulation Objective

I. Data Generation:

> Similarity

$$D(\hat{\mathbf{x}}; \{\boldsymbol{\theta}^k\}_{k=1}^m) = \frac{1}{m} \sum_{k \in \mathcal{C}} f^k \left(\hat{\mathbf{x}}; \boldsymbol{\theta}^k\right),$$

$$\mathcal{L}_{CE}(\hat{\mathbf{x}}, \mathbf{y}; \boldsymbol{\theta}_G) = CE(D(\hat{\mathbf{x}}), \mathbf{y}),$$

Stability

$$\mathcal{L}_{BN}(\hat{\mathbf{x}}; \boldsymbol{\theta}_G) = \frac{1}{m} \sum_{k \in \mathcal{C}} \sum_{l} \left(\|\mu_l(\hat{\mathbf{x}}) - \mu_{k,l}\| + \left\| \sigma_l^2(\hat{\mathbf{x}}) - \sigma_{k,l}^2 \right\| \right),$$

> Transferability

$$\mathcal{L}_{div}(\hat{\mathbf{x}}; \boldsymbol{\theta}_G) = -\omega KL\left(D(\hat{\mathbf{x}}), f_S(\hat{\mathbf{x}}; \boldsymbol{\theta}_S)\right),$$

■By combining the above losses, we can obtain the generator loss as follows,

II. Model Distillation:

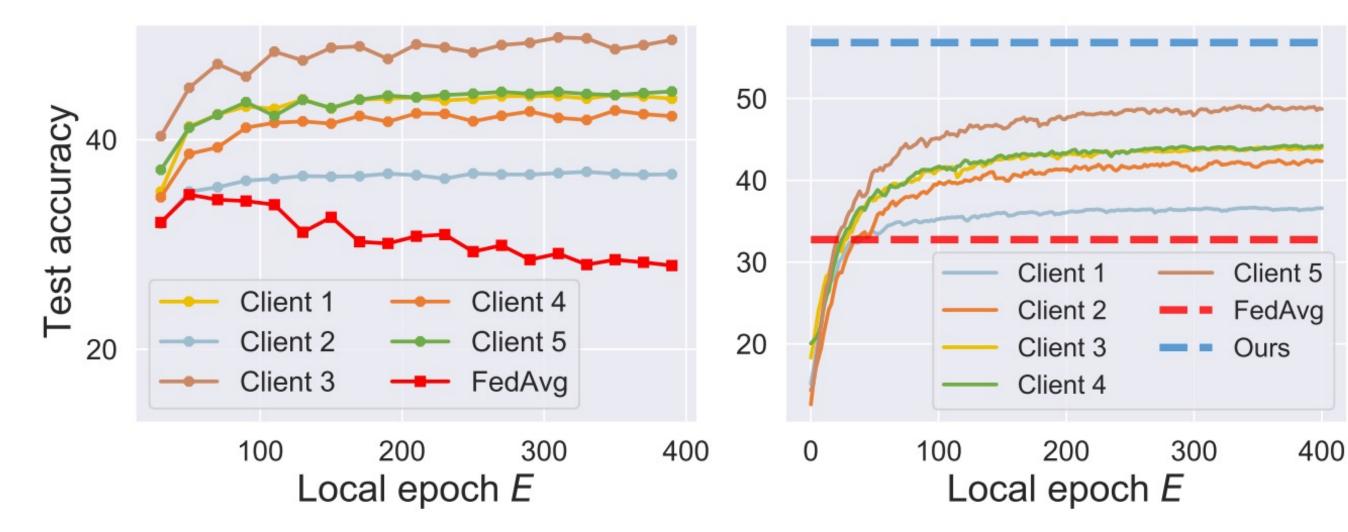
Loss for distillation

$$\mathcal{L}_{dis}(\hat{\mathbf{x}}; \boldsymbol{\theta}_S) = KL(D(\hat{\mathbf{x}}), f_S(\hat{\mathbf{x}}; \boldsymbol{\theta}_S)).$$

Number of client m, clients' local models $\{f^1(), \dots, f^m()\}$, generator $G(\cdot)$ with parameter θ_G , learning rate of the generator η_G , number of training rounds T_G for generator in each epoch, global model $f_S()$ with parameter θ_S , learning rate of the global model η_S , global model training $\theta^k \leftarrow LocalUpdate(k)$ Sample a batch of noises and labels $\{\mathbf{z}_i, \mathbf{y}_i\}_{i=1}^b$ // data generation stage Generate $\{\hat{\mathbf{x}}_i\}_{i=1}^b$ with $\{\mathbf{z}_i\}_{i=1}^b$ and $G(\cdot)$ $oldsymbol{ heta}_G \leftarrow oldsymbol{ heta}_G - \eta_G rac{1}{b} \sum_{i=1}^b
abla_{ heta} \ell_{gen}(\hat{\mathbf{x}}_i, \mathbf{y}_i; oldsymbol{ heta}_G)$ Generate $\{\hat{\mathbf{x}}_i\}_{i=1}^b$ with $\{\mathbf{z}_i\}_{i=1}^b$ and $G(\cdot)$ $m{ heta}_S = m{ heta}_S - \eta_S rac{1}{b} \sum_{i=1}^b
abla_{m{ heta}_S} \ell_{dis}(\hat{\mathbf{x}}_i; m{ heta}_S)$ end for

$\mathcal{L}_{gen}(\hat{\mathbf{x}}, \mathbf{y}; \boldsymbol{\theta}_G) = \mathcal{L}_{CE}(\hat{\mathbf{x}}, \mathbf{y}; \boldsymbol{\theta}_G) + \lambda_1 \mathcal{L}_{BN}(\hat{\mathbf{x}}; \boldsymbol{\theta}_G) + \lambda_2 \mathcal{L}_{div}(\hat{\mathbf{x}}; \boldsymbol{\theta}_G),$

FedAvg is not suitable for one-shot FL



- Left panel: Accuracy of FedAvg and clients' local models across different local training epochs E = {20, 40, 60, · · · , 400}. Right panel: The accuracy curve for local training. The dotted lines represent the best results of two one-shot FL methods (FedAvg and DENSE). Our DENSE outperforms FedAvg and local models consistently.
- For FedAvg, a larger value of E can cause the model to degrade even collapse. This result can be attributed to the inconsistent optimization objectives with non-IID data, which leads to weight divergence.

Experiments

Main Results

Table 1: Accuracy of different methods across $\alpha = \{0.1, 0.3, 0.5\}$ on different datasets.

Dataset		MNIST			FMNIST		CIFAR10		SVHN			CIFAR100		Tiny-ImageNet					
	Method	α=0.1	α =0.3	α =0.5	α=0.1	α =0.3	α =0.5	α =0.1	α =0.3	α =0.5	α =0 .1	α =0.3	α =0.5	α=0.1	α =0.3	α =0.5	α =0.1	α =0.3	α =0.5
	FedAvg	48.24	72.94	90.55	41.69	82.96	83.72	23.93	27.72	43.67	31.65	61.51	56.09	4.58	11.61	12.11	3.12	10.46	11.89
	FedDF	60.15	74.01	92.18	43.58	80.67	84.67	40.58	46.78	53.56	49.13	73.34	73.98	28.17	30.28	36.35	15.34	18.22	27.43
	Fed-DAFL	64.38	74.18	93.01	47.14	80.59	84.02	47.34	53.89	58.59	53.23	76.56	78.03	28.89	34.89	38.19	18.38	22.18	28.22
	Fed-ADI	64.13	75.03	93.49	48.49	81.15	84.19	48.59	54.68	59.34	53.45	77.45	78.85	30.13	35.18	40.28	19.59	25.34	30.21
•	DENSE (ours)	66,61	76.48	95.82	50.29	83.96	85.94	50.26	59.76	62.19	55.34	79.59	80.03	32.03	37.32	42.07	22,44	28.14	32.34

heterogeneous client models

Table 2: Accuracy comparisons across heterogeneous client models on CIFAR10. There are five clients in total, and each client has a personalized model.

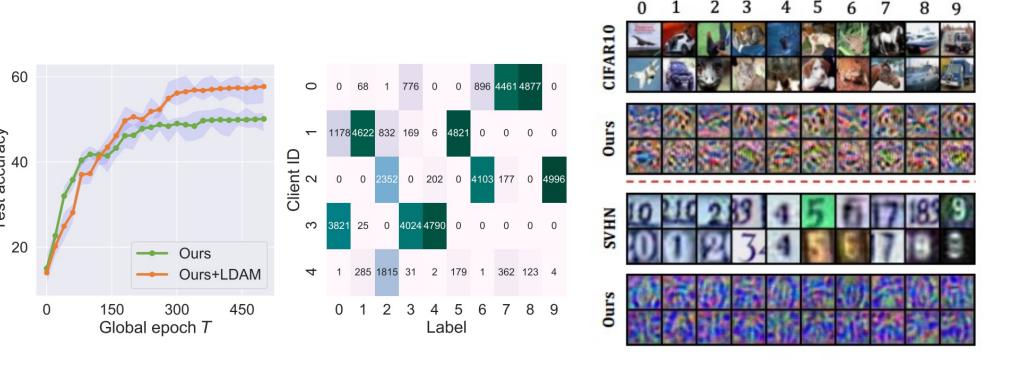
Madal			Clien	ıt	Server (ResNet-18)					
Model	ResNet-18	CNN1	CNN2	WRN-16-1	WRN-40-1	FedDF	Fed-DAFL	Fed-ADI	DENSE (ours)	
α =0.1	40.83	33.67	35.21	27.73	32.93	42.35	43.12	44.63	49.76	
α =0.3	51.49	52.78	44.96	47.35	37.24	52.72	57.72	58.96	63.25	
α=0.5	59.96	58.67	54.28	53.39	58.14	60.05	61.56	63.24	67.42	

More clients

Table 3: Accuracy across different number of clients $m=\{5,10,20,50,100\}$ on CIFAR10 and

Dataset			CIFAR	.10		SVHN						
m	FedAvg	FedDF	Fed-DAFL	Fed-ADI	DENSE (ours)	FedAvg	FedDF	Fed-DAFL	Fed-ADI	DENSE (ours)		
5	43.67	53.56	55.46	58.59	62.19	56.09	73.98	78.03	78.85	80.03		
10	38.29	54.44	56.34	57.13	61.42	45.34	62.12	63.34	65.45	67.57		
20	36.03	43.15	45.98	46.45	52.71	47.79	60.45	62.19	63.98	66.42		
50	37.03	40.89	43.02	44.47	48.47	36.53	51.44	54.23	57.35	59.27		
100	33.54	36.89	37.55	36.98	43.28	30.18	46.58	47.19	48.33	52.48		

Combination with imbalanced learning and visualization of synthetic data



Contact us

zj_zhangjie@zju.edu.cn, libraboli@tencent.com