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Transformer — SOTA deep learning model

Alphalold
NLP Tasks: Machine Translation, Language Pre-training

CV Tasks: Classification, Detection, Segmentation

Graph-Learning Tasks: Node prediction, Graph prediction
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Transformer Model Recap (original)
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Transformer Model Recap (original)

A"(X) = softmax (XWH(XW) ")

H
Attn(X) = X + ) A"(X)XWHWE:
h=1

FFN(X) = X + ReLU(X W)W,

Attention & FFN are position-insensitive.
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Transformer Model Recap (original)

Attention & FFN are position-insensitive.

A"(X) = softmax (XWH(XW) ")

H
Attn(X) = X + ) A"(X)XWHWE:
h=1

FFN(X) = X + ReLU(X W)W,

(Absolute) Positional Encoding (APE)
Assign an embedding vector to each position index
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How Powerful are APE-based Transformers?

 Definition [Universal approximator]
« A neural network can approximate any continuous functions in R™.
» Shallow and wide networks (Funahashi, 1989; Cybenko, 1989; Barron, 1994;)
* Deep and thin networks (Lu, 2017; Hanin, 2017; Lin, 2018)




How Powerful are APE-based Transformers?

e

————— — — B

Theorem (informal) (Yun et al., ICLR 2020)

Given any fixed input length n, Transformers with APE can approximate any
continuous sequence-to-sequence function with arbitrary precision under mild
assumptions.
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But in practice, absolute positional encoding is not so popular



Problems

 Extrapolation

« APE-based Transformer usually generalizes poorly to longer sequences, as those

positional embeddings for large indexes are hardly trained.
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Problems

 Extrapolation

« APE-based Transformer usually generalizes poorly to longer sequences, as those

positional embeddings for large indexes are hardly trained.

* Relative information

« Empirically, people find that absolute positional encoding cannot capture relative

positional signal well

» Apply to other data modality

* Image and graph data require several transformation-invariant properties, such as

rotation and translation, which are difficult to be satisfied by APE.
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From Absolute-PE to Relative-PE

 Relative Positional Encoding (RPE) encodes relative distance i — j for each position pair

(i,j) in the attention module
Alpp(X) = softmax (XWH(XW]) " + B)

The (i, j)-th entry of B models the interaction between the i-th and j-th position.
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From Absolute-PE to Relative-PE

 Relative Positional Encoding (RPE) encodes relative distance i — j for each position pair

(i,j) in the attention module
Alpp(X) = softmax (XWH(XW]) " + B)

The (i, j)-th entry of B models the interaction between the i-th and j-th position.

 RPE can be easily applied to various forms of data (e.g., graphs, images, etc) and

generalize better to longer sequences.

13



Examples of RPE: T5

Alpp(X) = softmax (XW/5(XW[)' + B)
B Is parametrized as a fully learnable Toeplitz matrix, I.e., b;; =
g Q KT

softmax( ) + &)
Vdy |

vV
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Examples of RPE: Swin-Transformer (SOTA In CV)

softmax(
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Examples of RPE: Graphormer (SOTA in Graph Learning)

Q KT
V

+b¢(viﬂ7j))

softmax(
V.

qb(vi, vj): Any Metric that Measures the Distance Between v; & v;.
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Shaw’s RPE [58]: b;; = X,,;Wé‘r;_ i where 7;_; are learnable vectors.

T5 [54]: bj; = m;_;, where m,;_; are learnable scalars, i.e., B is parameterized as a
Toeplitz matrix [22, 45].

DeBERTa [25]: b;; = X,,;chr,;r_j + si_j(XjW}é)T, where r;_; and s;_; are learnable
vectors.

Transformer-XL [10]: b;; = Xz-ch'(r,,;_jW}é)T +u(X; W T +o(r, ;W)T, where

u, v and W are all learnable vectors/matrix, and 7; _ ; are sinusoidal positional encoding
vectors fixed during training.
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Question

_ Transformer with APE Transformer with RPE

Generalize to longer sequence No Yes

Easily extend to image/graph data No Yes
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Negative Results

« All currently used RPE-Transformers are N0t universal approximators for continuous

sequence-to-sequence functions!
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Negative Results

* There exist continuous sequence-to-sequence functions that RPE-based Transformers

cannot approximate no matter how deep and wide the model is!
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Negative Results

* There exist continuous seguence-to-sequence functions that RPE-based Transformers

cannot approximate no matter how deep and wide the model is!

« Motivating example
Alpp(X) = softmax (XWA(XW})T + B)

H
h=1

softmax(.)V

—

softmax(.)V

) .

‘ Position-dependent outputs

Identical tokens

See detailed proofs in our paper https://arxiv.org/abs/2205.13401 21



Negative Results

* There exist continuous seguence-to-sequence functions that RPE-based Transformers

cannot approximate no matter how deep and wide the model is!

« Motivating example

Alpp(X) = softmax (XWA(XW})T + B)

H
Attn(X) = X + 3 A" (X) XWEWh:
h=1

Attention matrix is always a right stochastic matrix. This restricts the network from

capturing rich positional information in the RPEs (B) and limits model’s capacity.

See detailed proofs in our paper https://arxiv.org/abs/2205.13401 22



Question

_ Transformer with APE Transformer with RPE

Generalize to longer sequence No Yes

Easily extend to image/graph data No Yes

Universal approximation Yes No
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Overcome the problem

« Sufficient conditions for universal attention module (See detailed proofs in our paper)

» Attentive condition: the module should cover the originally defined attention.

» Position-aware condition: The module needs to break the right-stochastic-matrix limitation
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Overcome the problem

« Sufficient conditions for universal attention module (See detailed proofs in our paper)

» Attentive condition: the module should cover the originally defined attention.

» Position-aware condition: The module needs to break the right-stochastic-matrix limitation

Theorem 3. Given n,d € N*, p € [1,+00), € > 0, a compact set D C R™ 4 und a continuous
sequence-to-sequence function f : D — R4, Assume that A}, satisfies the following conditions:

* Attentive condition. For any uw € RY*" and ¢ € R, there exists a parametrization of Al
such that Al (X)) = softmax (Xu(Xu —cl)").

* Position-aware condition. There exists a parametrization of A}, and a vector v € R"
whose entries are all distinct, such that A%,(X)1 = v for any X € R"*4,

1
Then there exists a Transformer network g € Q3" such that (o f(X) —g(X)|pdX)" < &,
where || - ||, denotes the entry-wise (¥ norm for matrices.
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Practical instantiation

« A Universal RPE-based Transformer (Universal RPE-based attention module)

Ay (X) = softmax (XWo(XWyg)' +B) o C.
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Practical instantiation

« A Universal RPE-based Transformer (Universal RPE-based attention module)

Ay (X) = softmax (XWo(XWyg)' +B) o C.

« Capacity: URPE-based Transformers are universal approximators
« Parameter efficiency: introduce 0.01% additional parameters

« Compatible: can be used in both NLP generation and understanding tasks, can be applied to

tasks beyond NLP.
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Overview

_ Transformer with APE | Transformer with RPE Transformer with URPE

Generalize to longer sequence No Yes Yes

Easily extend to image/graph data No Yes Yes

Universal approximation Yes No Yes
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Experiments: Synthetic Tasks

* Verify whether the theoretical claims are correct

» Position Identification (PI): to predict the position index of each token.

fPI(WliWZJ '"rWn) = (1;2; ...,Tl)

« Even Token Prediction (ETP): to output the input tokens at positions with even number index.

ferp(Wq, Wy, .., wy) = (Wy, Wy, ..., Wy, EOS, ..., EOS)

Position Identification Even Token Prediction
1.0 rorE 1.0 oPE A w 020 1.20 = os 1.2
BN RPE B RPE 1.15 1.1

0.8{ === URPE (ours) 0.8 mmm URPE (ours) 015 1.10 02
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Figure 1: Results on synthetic sequence-to-sequence tasks: (1) Position Identification (Left Panel); Figure 2: Visualizations of the learned Universal RPE (matrix B and C' in Eq.(%)). It can be easily
(2) Even Token Prediction (Right Panel). |V| is the vocabulary size. The URPE-based Transformer seen that the matrix B and C' capture different aspects of positional information.
model consistently solves both tasks across different settings while other methods fail. 29



Experiments: Long-sequence Language Modelling

Table 1: Language model perplexity scores on WikiText-103 validation and test set. We use * to
indicate the best performance. All the results of the baseline methods are reported in [ 1 0]

Model #Params  Valid Perplexity  Test Perplexity
LSTM [21] - / 48.7
TCN [2] - / 45.2
GCNN-8 [11] - / 44.9
LSTM+Neural cache [2]] - / 40.8
GCNN-14 [11] - / 37.2
QRNN [46] 151IM  / 33.0
Hebbian+Cache [53] - / 29.9

Transformer-XL Base [ 0]
Transformer-XL Base + URPE-based Attention (ours)
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Experiments: Graph Learning (Molecular Property Prediction)

Table 2: Mean Absolute Error (MAE) on ZINC test set. We use * to indicate the best performance.

Model #Params Test MAE on ZINC-Subset Test MAE on ZINC-Full
GIN [66] 509,549 0.526+0.051 0.088+0.002
GraphSAGE [23] 505,341 0.398+0.002 0.126+0.003
GAT [62] 531,345 0.384+0.007 0.111+0.002
GCN [35] 505,079 0.367+0.011 0.11340.002
MoNet [45] 504,013 0.292+0.006 0.090+0.002
GatedGCN-PE [5] 505,011 0.214+0.006 -
MPNN(sum) [20] 480,805 0.145+0.007 -

HIMP [17] 614,516 0.151+0.006 0.036+0.002
PNA [¥] 387,155 0.142+0.010 -

GT [15] 588,929 0.226+0.014 -

SAN [37] 508,577 0.139+0.006 -
Graphormer [67] 489,321 0.122+0.006 0.052+0.005
Graphormer+URPE-based Attention (ours) §,491,737 0.086+0.007% 0.028+0.002*

Table 3: Results on PCQM4M from OGB-LSC. We use * to indicate the best performance. The

results of the baselines are reported in [67, 29].

Model #Params  Valid MAE
GCN [35] 2.0M 0.1691
GIN [66] 3.8M 0.1537
GCN-VN [35, 20] 4.9M 0.1485
GIN-VN [66, 20] 6.7M 0.1395
GINE-VN [0, 20] 13.2M 0.1430
DeeperGCN-VN [, 20] 25.5M 0.1398
GT[15] 0.6M 0.1400
GT-Wide [15] 83.2M 0.1408

Graphormer [67] 0.1264
Graphormer + URPE-based Attention (ours) 0.1238*
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Thanks!

For further questions, feel free to email
luosj@stu.pku.edu.cn

Personal website: https://Isj2408.github.io



