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Transformer – SOTA deep learning model

NLP Tasks: Machine Translation, Language Pre-training

CV Tasks: Classification, Detection, Segmentation

Graph-Learning Tasks: Node prediction, Graph prediction
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Transformer Model Recap (original)

Attention

Make all tokens (semantics) interact with each other

Position-wise FFN

Learn abstractive contextual representation
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Transformer Model Recap (original)

Attention & FFN are position-insensitive.
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Transformer Model Recap (original)

Attention & FFN are position-insensitive.

(Absolute) Positional Encoding (APE)

Assign an embedding vector to each position index
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How Powerful are APE-based Transformers?

• Definition [Universal approximator]

• A neural network can approximate any continuous functions in 𝑅𝑛.

• Shallow and wide networks (Funahashi, 1989; Cybenko, 1989; Barron, 1994;)

• Deep and thin networks (Lu, 2017; Hanin, 2017; Lin, 2018)
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How Powerful are APE-based Transformers?

Theorem (informal) (Yun et al., ICLR 2020)

Given any fixed input length n, Transformers with APE can approximate any 

continuous sequence-to-sequence function with arbitrary precision under mild 

assumptions.
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But in practice, absolute positional encoding is not so popular 

now……
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Problems

• Extrapolation 

• APE-based Transformer usually generalizes poorly to longer sequences, as those 

positional embeddings for large indexes are hardly trained.
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Problems

• Extrapolation 

• APE-based Transformer usually generalizes poorly to longer sequences, as those 

positional embeddings for large indexes are hardly trained.

• Relative information

• Empirically, people find that absolute positional encoding cannot capture relative 

positional signal well

• Apply to other data modality

• Image and graph data require several transformation-invariant properties, such as 

rotation and translation, which are difficult to be satisfied by APE.
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From Absolute-PE to Relative-PE

• Relative Positional Encoding (RPE) encodes relative distance 𝑖 − 𝑗 for each position pair 

(𝑖, 𝑗) in the attention module

The (𝑖, 𝑗)-th entry of B models the interaction between the 𝑖-th and 𝑗-th position.
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From Absolute-PE to Relative-PE

• Relative Positional Encoding (RPE) encodes relative distance 𝑖 − 𝑗 for each position pair 

(𝑖, 𝑗) in the attention module

The (𝑖, 𝑗)-th entry of B models the interaction between the 𝑖-th and 𝑗-th position.

• RPE can be easily applied to various forms of data (e.g., graphs, images, etc) and

generalize better to longer sequences.

13



Examples of RPE: T5

B is parametrized as a fully learnable Toeplitz matrix, i.e., 𝑏𝑖𝑗 =

𝑚𝑖−𝑗.
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Examples of RPE: Swin-Transformer (SOTA in CV)
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Examples of RPE: Graphormer (SOTA in Graph Learning)

+𝑏𝜙(𝑣𝑖,𝑣𝑗)

𝜙 𝑣𝑖 , 𝑣𝑗 : Any Metric that Measures the Distance Between 𝑣𝑖 & 𝑣𝑗.

Unweighted Shortest Path

Weighted Shortest Path
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List
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Question 

Transformer with APE Transformer with RPE

Generalize to longer sequence No Yes

Easily extend to image/graph data No Yes

Universal approximation Yes ? (This work)
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Negative Results

• All currently used RPE-Transformers are not universal approximators for continuous 

sequence-to-sequence functions!

19



Negative Results

• There exist continuous sequence-to-sequence functions that RPE-based Transformers 

cannot approximate no matter how deep and wide the model is!
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Negative Results

• There exist continuous sequence-to-sequence functions that RPE-based Transformers 

cannot approximate no matter how deep and wide the model is!

• Motivating example

softmax(.)V

See detailed proofs in our paper https://arxiv.org/abs/2205.13401

Identical tokens Position-dependent outputs

softmax(.)V
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Negative Results

• There exist continuous sequence-to-sequence functions that RPE-based Transformers 

cannot approximate no matter how deep and wide the model is!

• Motivating example

See detailed proofs in our paper https://arxiv.org/abs/2205.13401

Attention matrix is always a right stochastic matrix. This restricts the network from 

capturing rich positional information in the RPEs (B) and limits model’s capacity.
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Question 

Transformer with APE Transformer with RPE

Generalize to longer sequence No Yes

Easily extend to image/graph data No Yes

Universal approximation Yes No
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Overcome the problem

• Sufficient conditions for universal attention module (See detailed proofs in our paper) 

• Attentive condition: the module should cover the originally defined attention.

• Position-aware condition: The module needs to break the right-stochastic-matrix limitation
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Overcome the problem

• Sufficient conditions for universal attention module (See detailed proofs in our paper) 

• Attentive condition: the module should cover the originally defined attention.

• Position-aware condition: The module needs to break the right-stochastic-matrix limitation
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Practical instantiation

• A Universal RPE-based Transformer (Universal RPE-based attention module)
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Practical instantiation

• A Universal RPE-based Transformer (Universal RPE-based attention module)

• Capacity: URPE-based Transformers are universal approximators

• Parameter efficiency: introduce 0.01% additional parameters 

• Compatible: can be used in both NLP generation and understanding tasks, can be applied to 

tasks beyond NLP.
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Overview

Transformer with APE Transformer with RPE Transformer with URPE

Generalize to longer sequence No Yes Yes

Easily extend to image/graph data No Yes Yes

Universal approximation Yes No Yes
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Experiments: Synthetic Tasks

• Verify whether the theoretical claims are correct

• Position Identification (PI): to predict the position index of each token.

𝑓𝑃𝐼 𝑤1, 𝑤2, … , 𝑤𝑛 = (1,2, … , 𝑛)

• Even Token Prediction (ETP): to output the input tokens at positions with even number index.

𝑓𝐸𝑇𝑃 𝑤1, 𝑤2, … , 𝑤𝑛 = (𝑤2, 𝑤4, … , 𝑤𝑛, 𝐸𝑂𝑆,… , 𝐸𝑂𝑆)
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Experiments: Long-sequence Language Modelling
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Experiments: Graph Learning（Molecular Property Prediction)
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Thanks!

For further questions, feel free to email 
luosj@stu.pku.edu.cn

Personal website: https://lsj2408.github.io


