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Numerical quadrature

♣ For a probability distribution µ over a space X

n∑
i=1

wif(xi) ≈
∫
X
f(x) dµ(x)

is called a quadrature rule,
where wi ∈ R are weights and xi ∈ X are sample points

Roughly speaking, this research is about...

When an integrand f is in a space so-called RKHS,

• can we find a configuration of xi with small integral error?
• what is the convergence guarantee then?
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Kernel quadrature

♣ Kernel quadrature

Let k be a positive definite kernel and µ be a Borel probability
measure on X

For a quadrature rule Qn for µ

Qn(f) =

n∑
i=1

wif(xi)

(
≈
∫
X
f(x) dµ(x) =: µ(f)

)
,

the worst-case error is defined as

wce(Qn) := sup
∥f∥H≤1

|Qn(f)− µ(f)|,

where H is the RKHS associated with k

▷ We want to minimize this wce(Qn)
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Why kernel quadrature?

♣ What is the benefit of kernel quadrature?

• Includes classical examples such as Sobolev spaces
• Can compute the worst-case error (theoretical guarantee!)

wce(Qn)
2 = sup

∥f∥≤1

⟨
f, w⊤k(·, X)− kµ

⟩2
H

= w⊤k(X,X)w − 2w⊤kµ(X) + µ(kµ)

where w = (wi)
n
i=1, X = (xi)

n
i=1, kµ :=

∫
X k(·, x) dµ(x)

... if kµ is known, we can convex-optimize the weights
• Application to GP regression / Bayesian quadrature
“Fast Bayesian Inference with Batch Bayesian Quadrature via
Kernel Recombination” [Adachi et al., 2022]
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Mercer decomposition

♣ Consider the spectral decomposition of an integral operator

K : L2(µ) → L2(µ); f 7→
∫
X
k(·, x)f(x) dµ(x),

we have the following Mercer decomposition under a mild
condition:

k(x, y) =

∞∑
m=1

σmem(x)em(y),

where

• (σm, em) are eigenpairs of K, σ1 ≥ σ2 ≥ · · · ≥ 0

• (em)∞m=1 ⊂ L2(µ), (
√
σmem)∞m=1 ⊂ H are orthonormal

• σn typically decays polynopmially (Sobolev kernel) or
exponentially (Gaussian kernel)

▷ Empirically, we approximately have min wce(Qn)
2 ∼ σn
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Kernel quadrature: a table

♣ Comparison with other methods

References: Herding [Chen et al., 2010; Bach et al., 2012], SBQ [Huszár and Duvenaud,
2012], Leveraged [Bach, 2017], DPP [Belhadji et al., 2019; Belhadji, 2021], CVS [Belhadji
et al., 2020], KT++ [Dwivedi and Mackey, 2021, 2022; Shetty et al., 2022]
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Main theoretical result

We call Qn a convex quadrature when wi ≥ 0 and
∑n

i=1wi = 1

Let k0 =
∑n−1

i=1 φi(x)φj(y) be another kernel with k1 := k − k0

being positive definite (k1,diag(x) := k1(x, x))

Theorem (Theorem 1 in the paper)
For an empirical measure µ̃N = 1

N

∑N
j=1 δyj with yj ∼iid µ

we can construct an n-point convex quadrature Qn with

Qn(φi) = µ̃N (φi), Qn(k1,diag) ≤ µ̃N (k1,diag)

in O
(
nN + n3 log(N/n)

)
computational steps

Resulting Qn satisfies

E
[
wce(Qn)

2
]
≤ 8

∫
X
k1(x, x) dµ(x) + 1

N

∫
X
k(x, x) dµ(x)
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Remarks

♣ We should use a big N � n to obtain a good quadrature
♣ Reduction of a big discrete measure is known as
recombination [Litterer and Lyons, 2012; Tchernychova, 2015]
♣ If we know the Mercer decomposition, we can use
k0(x, y) =

∑n−1
m=1 σmem(x)em(y), then the guarantee becomes

wce(Qn)
2 = O

( ∞∑
m=n

σm +
1

N

)

(Corollary 2 in the paper)

♣ Otherwise, we can use the Nyström approximation:
theoretical bound (Theorem 3, Corollary 4 in the paper) is
loose but empirically performs very well
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Numerical experiments

♣ Periodic sobolev spaces (d: dimension, r: smoothness)

• Used N = n2 for subsampling-based methods
• d ≥ 2: product RKHS, no known optimal
• ‘+ opt’ is additionally optimizing the weights w
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Numerical experiments

♣ From UCI Machine Learning Repository, we used
‘3D Road Network’ and ‘Combined Cycle Power Plant’

• Regarded the data as an equal-weight discrete measure
• Gaussian kernel with median heuristics
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Conclusion

♣ Summary

• Kernel quadrature: a numerical integration in RKHS
• We have given a practical algorithm for constructing
kernel quadrature with theoretical guarantee

• Outperforms others by exploiting spectral decay

♣ Future work

• Can we improve guarantees for the Nyström version?
• Why does ‘+opt’ work so well with our methods?
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