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Motivation

Global covariance pooling (GCP) has shown remarkable potential to improve performance

of deep architectures in a variety of tasks, especially visual recognition.
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Motivation

* One of core differences among those deep GCP methods 1s post-normalization for covariance representations.
* Behaviors of existing approaches vary significantly, and there is a lack of an intuitive and unified interpretation.

* Another issue of existing post-normalization methods is high computational complexity (O(d?) or O(d?)) .

Method Formulation Complexity Train Infer.
e 2
Element-wise B.-CNN Galoa (Y(ﬂ)_\(, (X}%Z; - (d2) 4 v
Post-Norm. SigmE [25] 2/(1+e . Ji—1 O(dQ) v v
LN [2] BONVX X)—p)/o)d~y [O(d) v v
DeepO-P [23] V(LogTM(XTX)) O(dz) v v
Structure-wise MERCO V(X" X)) Tn1/2 O(d:,g) v v
Post-Norm. IB-CNN[30]  fo(sqrt(V(XTX)1/?)) O(d) ooV
iSQRT-COV [28] V(~ (XTX)/2) O(d?) v v
MaxExp [25] I-I-X" X (X" X4e)* |od v v
Ours DropCov V(6,(X)1s,(X)) L O(d) v x|

x: Note 3 and ¢ are parameters. ® and é indicate element-wise multiplication and addition, respectively.
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Using MPN as an example

===+ Test[0=0.1]
= Train [0=0.1]
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(b) Generalization vs. representation ability

Z— 1, it a~——0 :Representation Decorrelation & Information Loss,
Z+— XX, if a+—1 :Information Preservation & Strong Correlation.

* When a — 0, Z will be decorrelated, which can help combat over-fitting, which, however, will lead to

information loss for XX, hurting the representation ability of covariances.

* When o — 1, information of X'X will be gradually preserved, maintaining the correlations as
characterized in the covariance matrices, which makes training of neural networks difficult (e.g., over-

fitting)
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Our Finding

Corollary 1. Effective post-normalization (e.g., matrix power normalization (MPN) with0 < o < 1)
can achieve a good trade-off between representation decorrelation and information preservation
for GCP, which are crucial to alleviate over-fitting and increase representation ability of deep GCP
networks, respectively. Particularly, MPN with o = 0.5 achieves the best trade-off for a € (0, 1]

(without considering other factors),

which is proved to be the widely used choice of « |
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Q: Could this finding be extended to other existing post-normalization methods?




Extension of Existing Post-normalization Methods (Part-I)

From Matrix Power Normalization (MPN) to Adaptive Power Normalization (APN)

by considering effect of inputs :

min [a(log()\mm) log(max(C, Anin)) TZ » )\a/z %) log )\a/z

N

representation decorrelation
1nf0rmat10n preservation

Method d=64d =128 d = 256
MPN (a = 0.5) 73.1 74.4 74.9
APN (Ours) 73.3 74.5 75.0

Comparisons (% in Top-1 accuracy) of adaptive normalization methods
with the fixed ones using ResNet-18 on ImageNet-1K.

APN brings 0.1% - 0.2% gains over MPN with = 0.5 by considering effect of inputs.
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Extension of Existing Post-normalization Methods (Part-II)

MPN with a > 1

If o of MPN is larger than one would violate the principle w0 AT1A6
of representation decorrelation and disrupts equilibruom (L 15l
between e1genvalues - ;‘:'...;.-..,_.._\_.; ‘“m. egesas’ i
S 60 o
2y
Matrix Logarithm Normalization (LogM) 2 404 oo Test [a=05]
; S
me Train [a=2]
lOg(AZ) > € log( (A’l: _|_ 6)/6 20 - s us Tcst[LogM]
m—— Train [LogM]
DeepO,p [-LogM* — ﬁ:ﬁfﬁ:\ad st

0 #‘l
Element-wise Normalization (EwN) 0 20 40 60 80 100

lo(sqrt(V(XTX))) — B Lla(sqrt(VIXTX))) v
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Extension of Existing Post-normalization Methods (Part-III)

Method d = 64 d = 256

Top-1 Acc. (%) Train (pus)  Test (us) | Top-1 Acc. (%) Train (us)  Test (us)
Plain GCP 71.1 3.45 1.04 70.0 35.08 11.89
B-CNN [31] 38.3 4.31 1.23 41.1 44.97 14.38
B-CNN + LT* 68.3 4.45 1.28 73.2 47.37 15.24
LN 71.7 4.10 1.13 70.2 40.79 13.59
DeepOsP [23]] 70.1 922.50 910.95 Not Converge 9731.71 9638.71
I-LogM* 71.2 922.53 910.98 72.0 9732.46 9639.65
MPN-COV [29 73.1 925.16 913.87 74.9 9735.11 9642.43
iISQRT-COV 73.4 12.35 4.94 75.2 193.65 77.46
IB-CNN [30] Not Converge 13.93 5.16 36.1 202.38 80.55
IB-CNN + LT* 70.0 14.16 5.21 72.8 207.48 82.98

I-LogM * and B - CNN + LT* bring 1.1% and 30% gains for DeepO2P and B-CNN.

Above results clearly verifty our finding in Corollary 1.




Proposed DropCov

Z = (X'X)* =UAU"

Z— 1, 1if a——0 :Representation Decorrelation & Information Loss,
Z+— XX, if a+~—1 :Information Preservation & Strong Correlation.

ISSUE: Although structure-wise post-norm methods have a satisfying
performance, they suffer from high computational complexity.

z=V(Y'Y), Y =4,(X) p: dropout probability
{ If p —— 0 : Preserves more information while performing less decorrelation.
If p —— 1 : Sparser, less correlated features but more information loss.

Q: Could we use efficient dropout to perform representation decorrelation for GCP?
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Proposed DropCov

Q: How to perform dropout ? & How to choose probability of dropout?

A pre-normalization performs adaptive channel dropout of probability p on features X before GCP:
(1) keep the structure of GCP and (2) a linear computational complexity of O(d).

1 - =1 o (|w%)

log(d) \ [lw|[|=]|
ACD > V(YTY) | = Feature importance :
X S — e e y —
A‘ > CNNsor ViT —»{ DR [—»| InferenceStage: R Y e w = o(C1D3(GAP(X)))
. |
- V(X™X) | Ly ,
Image Backbone Model | e i Feature correlation :

DropCov (Ours) T = SUMI-OW<X.TX.)

Since feature importance w and feature correlation m are closely related to representation decorrelation and
information preservation, we adaptively decide probability of channel dropout for reaching a good trade-off
between representation decorrelation and information preservation.
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Experiments Results

Method d = 64 d = 256

Top-1 Acc. (%) Train (us) Test (us) | Top-1 Acc. (%) Train (us)  Test (us)
Plain GCP 71.1 3.45 1.04 70.0 35.08 11.89
B-CNN [31] 38.3 4.31 1.23 41.1 44 .97 14.38
B-CNN + LT~ 68.3 4.45 1.28 73.2 47.37 15.24
LN 71.7 4.10 1.13 70.2 40.79 13.59
DeepO2P [23] 70.1 922.50 910.95 Not Converge 9731.71 9638.71
[-LogM™ 71.2 922.53 910.98 72.0 9732.46 9639.65
MPN-COV [29] 73.1 925.16 913.87 74.9 9735.11 964243
1ISQRT-COV 73.4 12.35 4.94 75.2 193.65 77.46
IB-CNN Not Converge 13.93 5.16 36.1 202.38 80.55
IB-CNN + LT~ 70.0 14.16 5.21 72.8 207.48 82.98
DropCov (Ours) 73.5 3.54 1.04 75.2 36.20 11.89

{: Note we compute running speed (us) of single GCP module with post-normalization on a 2080Ti GPU.
g: The original ResNet-18 with GAP achieves 70.2% in Top-1 accuracy.

Our DropCov performs better or on par with the counterparts in terms of efficiency and
effectiveness, providing a very promising normalization method for deep GCP networks.
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Experiment Results

Method Params. FLOPs IN-1K (1) IN-C() IN-A() Sty.-IN ()
ResNet-34 [17] 218 M 3.66G 74.19 77.9 1.63 7.59
ResNet-50 [17] 256 M 386G 76.02 76.7 2.47 7.15
ResNet-101 [17] 46M 757G 77.67 70.3 4.15 9.51
ResNet-152 [17] 602M 11.28G 78.13 69.3 5.98 10.09
RCSNCt-34+DI‘OpCOV (OU.I'S) 20.6 M 556G 7681(262) 711(68) 3-45(1.82) 1116(357)
ResNet-50+DropCov (Ours) 320M 619G 78190217y 6986.9) 5.08261) 9.90(2.75)
ResNet-101+DropCov (Ours)  51.0M 990G 79.51(1.84) 65845 7.54(3.30) 11.41(1 90
DeiT-S [43] 221 M 4.6 G 79.8 54.6 18.9 1491
Swin-T [32] 283 M 45G 81.2 62.0 21.6 13.40
T2T-ViT-14 [49] 21.5M 52G 81.5 53.2 23.9 15.80
DeiT-B [43] 86.6M 176G 82.0 48.5 274 17.94
ConViT-B [6] 86.5M 177G 82.4 46.9 29.0 19.67
DeiT—S+Dr0pCOV (OU,I'S) 25.6 M 55G 824(26) 526(20) 3 1.2(12,3) 1710(219)
SWil’l—T+DI‘OpCOV (OU.I‘S) 31.6 M 6.0G 82.5(1_3) 54.8(7_2) 33.1(11_5) 14.13(0'73)
TZT—ViT—14+DI'OpCOV (OUfS) 249 M 54G 82.7(1_2) 52.1(1'1) 31~7(7.8) 18.81(3_01)

Our DropCov provides a simple yet effective method to improve deep architectures. CNNs and

ViTs with DropCov achieve better trade-offs between accuracy and model complexity.
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Thanks!

Source code 1s available at

https://github.com/mingzeG/DropCov
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