

DropCov: A Simple yet Effective Method for Improving Deep Architectures

Qilong Wang ^{1 3}, Mingze Gao ¹, Zhaolin Zhang ¹, Jiangtao Xie ², Peihua Li ², Qinghua Hu^{1 3}

¹ Tianjin University, ² Dalian University of Technology, ³ Haihe Laboratory of Information Technology Application Innovation, Tianjin, China

https://github.com/mingzeG/DropCov

NeurIPS 2022

Motivation

Global covariance pooling (GCP) has shown remarkable potential to improve performance of deep architectures in a variety of tasks, especially visual recognition.

Motivation

- One of core differences among those deep GCP methods is post-normalization for covariance representations.
- Behaviors of existing approaches vary significantly, and there is a lack of an intuitive and unified interpretation.
- Another issue of existing post-normalization methods is high computational complexity $(O(d^3) \text{ or } O(d^2))$.

	Method	Formulation	Complexity	Train	Infer.
Flement-wise	B-CNN [31]	$\ell_2(sqrt(\mathrm{V}(\mathbf{X}^T\mathbf{X})))$	$O(d^2)$	\checkmark	\checkmark
Post-Norm.	SigmE 25	$2/(1+e^{-\beta \cdot \mathbf{V}(\mathbf{X}^T \mathbf{X})}) - 1$	$O(d^2)$	\checkmark	\checkmark
	LN [2]	$oldsymbol{eta} \odot (\mathrm{V}(\mathbf{X}^T\mathbf{X}) - \mu)/\sigma) \oplus oldsymbol{\gamma}$	$O(d^2)$	\checkmark	\checkmark
Structure-wise Post-Norm.	DeepO ₂ P [23]	$V(LogM(\mathbf{X}^T\mathbf{X}))$	$O(d^3)$	\checkmark	\checkmark
	MPN-COV [29]	$\mathrm{V}((\mathbf{X}^T\mathbf{X})^lpha)$	$O(d^3)$	\checkmark	\checkmark
	IB-CNN 30	$\ell_2(sqrt({f V}({f X}^T{f X})^{1/2}))$	$O(d^3)$	\checkmark	\checkmark
	iSQRT-COV [28]	$\mathrm{V}(pprox(\mathbf{X}^T\mathbf{X})^{1/2})$	$O(d^3)$	\checkmark	\checkmark
	MaxExp [25]	$\mathbf{I} - (\mathbf{I} - \mathbf{X}^T \mathbf{X} / (\mathbf{X}^T \mathbf{X} + \varepsilon))^{lpha}$	$O(d^3)$	\checkmark	\checkmark
Ours	DropCov	$\mathrm{V}(\delta_{ ho}(\mathbf{X})^T\delta_{ ho}(\mathbf{X}))$	O(d)	\checkmark	X

*****: Note β and ε are parameters. \odot and \oplus indicate element-wise multiplication and addition, respectively.

How Does Post-Normalization Impact Deep GCP?

Using MPN as an example

 $\begin{cases} \mathbf{Z} \longmapsto \mathbf{I}, & \text{if } \alpha \longmapsto 0 \\ \mathbf{Z} \longmapsto \mathbf{X}^T \mathbf{X}, & \text{if } \alpha \longmapsto 1 \end{cases} : \text{Representation Decorrelation & Information Loss,} \end{cases}$

- When $\alpha \to 0$, Z will be decorrelated, which can help combat over-fitting, which, however, will lead to information loss for X^TX, hurting the representation ability of covariances.
- When $\alpha \rightarrow 1$, information of X^TX will be gradually preserved, maintaining the correlations as characterized in the covariance matrices, which makes training of neural networks difficult (e.g., over-fitting) 4

Our Finding

Corollary 1. Effective post-normalization (e.g., matrix power normalization (MPN) with $0 < \alpha \le 1$) can achieve a good trade-off between representation decorrelation and information preservation for GCP, which are crucial to alleviate over-fitting and increase representation ability of deep GCP networks, respectively. Particularly, MPN with $\alpha = 0.5$ achieves the best trade-off for $\alpha \in (0, 1]$ (without considering other factors), which is proved to be the widely used choice of α [29] 30].

Q: Could this finding be extended to other existing post-normalization methods?

Extension of Existing Post-normalization Methods (Part-I)

From Matrix Power Normalization (MPN) to Adaptive Power Normalization (APN)

by considering effect of inputs :

$$\min_{\alpha} \left[\underbrace{\alpha(\log(\lambda_{max}) - \log(\max(C, \lambda_{min})))}_{\text{representation decorrelation}} \underbrace{-\tau \sum_{i=1}^{K} (\lambda_{i}^{\alpha} / \sum_{i=1}^{K} \lambda_{i}^{\alpha}) \log(\lambda_{i}^{\alpha} / \sum_{i=1}^{K} \lambda_{i}^{\alpha})}_{\text{information preservation}} \right].$$

$$\frac{\text{Method}}{\text{Method}} \quad d = 64 \ d = 128 \ d = 256 \\ \text{MPN} (\alpha = 0.5) \quad 73.1 \quad 74.4 \quad 74.9 \\ \text{APN} (\text{Ours}) \quad 73.3 \quad 74.5 \quad 75.0 \\ \end{array}$$

Comparisons (% in Top-1 accuracy) of adaptive normalization methods with the fixed ones using ResNet-18 on ImageNet-1K.

APN brings 0.1% - 0.2% gains over MPN with = 0.5 by considering effect of inputs.

Extension of Existing Post-normalization Methods (Part-II)

MPN with $\alpha > 1$

DeepO₂p

B-CNN

If α of MPN is larger than one would violate the principle of representation decorrelation and disrupts equilibrium between eigenvalues.

Matrix Logarithm Normalization (LogM)

 $\log(\lambda_i) \longrightarrow \epsilon \log((\lambda_i + \epsilon)/\epsilon)$

Element-wise Normalization (EwN)

 $\ell_2(sqrt(\mathbf{V}(\mathbf{X}^T\mathbf{X}))) \longrightarrow \boldsymbol{\beta} \odot \ell_2(sqrt(\mathbf{V}(\mathbf{X}^T\mathbf{X}))) \oplus \boldsymbol{\gamma}$

B-CNN+LT*

I-LogM*

Extension of Existing Post-normalization Methods (Part-III)

Method	() () () () () () () () () ()	d = 64		d = 256			
	Top-1 Acc. (%)	Train (µs)	Test (µs)	Top-1 Acc. (%)	Train (µs)	Test (µs)	
Plain GCP	71.1	3.45	1.04	70.0	35.08	11.89	
B-CNN 31	38.3	4.31	1.23	41.1	44.97	14.38	
$B-CNN + LT^*$	68.3	4.45	1.28	73.2	47.37	15.24	
LN [2]	71.7	4.10	1.13	70.2	40.79	13.59	
$DeepO_2P$ [23]	70.1	922.50	910.95	Not Converge	9731.71	9638.71	
I-LogM*	71.2	922.53	910.98	72.0	9732.46	9639.65	
MPN-COV [29]	73.1	925.16	913.87	74.9	9735.11	9642.43	
iSQRT-COV [28]	73.4	12.35	4.94	75.2	193.65	77.46	
IB-CNN [30]	Not Converge	13.93	5.16	36.1	202.38	80.55	
$IB-CNN + LT^*$	70.0	14.16	5.21	72.8	207.48	82.98	

I - LogM * and B - CNN + LT* bring 1.1% and 30% gains for DeepO2P and B-CNN. Above results clearly verify our finding in Corollary 1.

.

•

Proposed DropCov

$$\mathbf{Z} = (\mathbf{X}^T \mathbf{X})^{\alpha} = \mathbf{U} \mathbf{\Lambda}^{\alpha} \mathbf{U}^T$$

 $\left\{ \begin{array}{ll} \mathbf{Z} \longmapsto \mathbf{I}, & \text{if} \quad \alpha \longmapsto 0 \quad : \text{Representation Decorrelation \& Information Loss,} \\ \mathbf{Z} \longmapsto \mathbf{X}^T \mathbf{X}, & \text{if} \quad \alpha \longmapsto 1 \quad : \text{Information Preservation \& Strong Correlation.} \end{array} \right.$

ISSUE: Although structure-wise post-norm methods have a satisfying performance, they suffer from high computational complexity.

$$\mathbf{z} = \mathbf{V}(\mathbf{Y}^T \mathbf{Y}), \ \mathbf{Y} = \delta_{\rho}(\mathbf{X})$$
 ρ : dropout probability

 $\begin{cases} \text{If } \rho \longmapsto 0 & : \text{ Preserves more information while performing less decorrelation.} \\ \text{If } \rho \longmapsto 1 & : \text{ Sparser, less correlated features but more information loss.} \end{cases}$

Q: Could we use efficient dropout to perform representation decorrelation for GCP?

Proposed DropCov

Q: How to perform dropout ? & How to choose probability of dropout?

A pre-normalization performs adaptive channel dropout of probability ρ on features X before GCP: (1) keep the structure of GCP and (2) a linear computational complexity of O(d).

Since feature importance $\boldsymbol{\omega}$ and feature correlation $\boldsymbol{\pi}$ are closely related to representation decorrelation and information preservation, we adaptively decide probability of channel dropout for reaching a good trade-off between representation decorrelation and information preservation.

1895 1995 1995

Experiments Results

Method	d = 64			d = 256			
Wieulou	Top-1 Acc. (%)	Train (µs)	Test (µs)	Top-1 Acc. (%)	Train (µs)	Test (µs)	
Plain GCP	71.1	3.45	1.04	70.0	35.08	11.89	
B-CNN 31	38.3	4.31	1.23	41.1	44.97	14.38	
$B-CNN + LT^*$	68.3	4.45	1.28	73.2	47.37	15.24	
LN [2]	71.7	4.10	1.13	70.2	40.79	13.59	
DeepO ₂ P [23]	70.1	922.50	910.95	Not Converge	9731.71	9638.71	
I-LogM*	71.2	922.53	910.98	72.0	9732.46	9639.65	
MPN-COV [29]	73.1	925.16	913.87	74.9	9735.11	9642.43	
iSQRT-COV [28]	73.4	12.35	4.94	75.2	193.65	77.46	
IB-CNN 30	Not Converge	13.93	5.16	36.1	202.38	80.55	
IB-CNN + LT*	70.0	14.16	5.21	72.8	207.48	82.98	
DropCov (Ours)	73.5	3.54	1.04	75.2	36.20	11.89	

◊: Note we compute running speed (µs) of single GCP module with post-normalization on a 2080Ti GPU.
 #: The original ResNet-18 with GAP achieves 70.2% in Top-1 accuracy.

Our DropCov performs better or on par with the counterparts in terms of efficiency and effectiveness, providing a very promising normalization method for deep GCP networks.

Experiment Results

Method	Params.	FLOPs	IN-1K (†)	IN-C (\downarrow)	IN-A (†)	StyIN (†)
ResNet-34 [17]	21.8 M	3.66 G	74.19	77.9	1.63	7.59
ResNet-50 [17]	25.6 M	3.86 G	76.02	76.7	2.47	7.15
ResNet-101 [17]	44.6 M	7.57 G	77.67	70.3	4.15	9.51
ResNet-152 [17]	60.2 M	11.28 G	78.13	69.3	5.98	10.09
ResNet-34+DropCov (Ours)	29.6 M	5.56 G	$76.81_{(2.62)}$	$71.1_{(6.8)}$	$3.45_{(1.82)}$	$11.16_{(3.57)}$
ResNet-50+DropCov (Ours)	32.0 M	6.19 G	$78.19_{(2.17)}$	$69.8_{(6.9)}$	$5.08_{(2.61)}$	$9.90_{(2.75)}$
ResNet-101+DropCov (Ours)	51.0 M	9.90 G	79.51 _(1.84)	65.8 (4.5)	7.54 (3.39)	$11.41_{(1.90)}$
DeiT-S [43]	22.1 M	4.6 G	79.8	54.6	18.9	14.91
Swin-T [32]	28.3 M	4.5 G	81.2	62.0	21.6	13.40
T2T-ViT-14 [49]	21.5 M	5.2 G	81.5	53.2	23.9	15.80
DeiT-B 43	86.6 M	17.6 G	82.0	48.5	27.4	17.94
ConViT-B 6	86.5 M	17.7 G	82.4	46.9	29.0	19.67
DeiT-S+DropCov (Ours)	25.6 M	5.5 G	$82.4_{(2.6)}$	$52.6_{(2.0)}$	$31.2_{(12.3)}$	$17.10_{(2.19)}$
Swin-T+DropCov (Ours)	31.6 M	6.0 G	$82.5_{(1.3)}$	$54.8_{(7.2)}$	$33.1_{(11.5)}$	$14.13_{(0.73)}$
T2T-ViT-14+DropCov (Ours)	24.9 M	5.4 G	82.7 (1.2)	$52.1_{(1.1)}$	31.7 (7.8)	$18.81_{(3.01)}$

Our DropCov provides a simple yet effective method to improve deep architectures. CNNs and ViTs with DropCov achieve better trade-offs between accuracy and model complexity.

Thanks!

Source code is available at :

https://github.com/mingzeG/DropCov