

Versatile Multi-stage Graph Neural Network for Circuit Representation

Shuwen Yang, Zhihao Yang, Dong Li, Yingxue Zhang, Zhanguang Zhang, Guojie Song* & Jianye HAO*

Deep Learning for EDA

Integrated circuits (ICs) are extensively used in modern electronic products like computers, smart-phones, and cars.

Due to the rapid growth in the scale of circuits, deep learning technologies have been widely exploited in Electronic Design Automation (EDA) to:

- speed up circuit design
- save labor costs

•

Target of Circuit Prediction Task

to find defected circuits early

to guide circuit design

Neural Networks

predict properties in early stages (congestion, wire-length, ...)

Challenges of Circuit Prediction Task:

- <u>Complex and variant information underlying under different stages</u>
- Generalize/transfer across tasks

Challenges of Circuit Prediction Task:

<u>Complex and variant information underlying under different stages</u>

Existing methods are **stage-specific**:

- focus on either topological/geometrical information
- not compatible with circuits on logic synthesis stage

Challenges of Circuit Prediction Task:

- Complex and variant information ...
- Generalize/transfer across tasks

Challenges of Circuit Prediction Task:

Generalize/transfer across tasks

Existing methods are task-specific:

- focus on one (or few) prediction task(s)
- task-specific modules stifle knowledge transferring among tasks

We propose a circuit representation framework:

- Data structure: Circuit Graph
- Neural network: Circuit GNN

The solution is **VERSATILE**:

- stage-adaptive
 - can exploit and fuse topological/geometrical information
 - compatible with circuits in logic synthesis/placement stages
- task-adaptive
 - can be used to solve various circuit prediction tasks
 - can transfer knowledge learned from one task to others

Circuit Graph

Heterogeneous graph with two types of edges:

- topo-edges: topological connections between cells and nets
- geom-edges: geometrical adjacencies among cells (absent for logic synthesis circuits)

Circuit GNN

Multi-layer message-passing & fusing:

- Pass topological/geometrical messages and fuse them at the end of each layer
- Only pass topological message for logic synthesis circuits

Experiments

Congestion prediction results in logic/placement stages:

- Our solution is both efficient and effective
- Our solution is adaptive to both stages, whether or not geometry is available

				<u> </u>	·	0	
Baseline	Time (s/epoch)	Cell-level			Grid-level		
		pearson	spearman	kendall	pearson	spearman	kendall
GCN	9.43	0.777	0.265	0.199	0.221	0.366	0.260
GraphSAGE	11.79	0.776	0.252	0.188	0.208	0.375	0.268
GAT	13.90	0.777	0.267	0.200	0.215	0.399	0.280
CongestionNet	22.31	0.777	0.269	0.200	0.277	0.394	0.280
MPNN	116.24	0.780	0.289	0.217	0.292	0.458	0.319
Ours (w/o. geom.)	21.62	0.779	0.289	0.217	0.315	0.468	0.329

Table 1: Congestion prediction result in logic synthesis stage

Table 2: Congestion	prediction result in	placement stage (in correlation)
0			

Baseline	Time (s/epoch)	Cell-level			Grid-level		
		pearson	spearman	kendall	pearson	spearman	kendall
GAT (w. geom.)	16.21	0.777	0.263	0.197	0.210	0.397	0.279
pix2pix	4.46	-	-	-	0.562	0.554	0.392
LHNN	305.47	-	-	-	0.703	0.695	0.540
Ours (w/o. topo.)	21.54	0.883	0.713	0.573	0.684	0.730	0.536
Ours	27.07	0.887	0.714	0.575	0.697	0.770	0.577

Experiments

Congestion prediction results in placement stage (visualized):

• Our solution has clearer decision boundary

(a) Input

(b) pix2pix

(c) LHNN

(d) Ours

(e) Ground-truth

Figure 5: Visualization of congestion maps of circuit ispd2011/superblue19 produced by the baselines.

Net wire-length prediction results in placement stage:

- Our solution is also efficient and effective
- Our solution is much better than LHNN, which is especially designed to predict congestion

Table 3: Net wirelength prediction in placement stage (\downarrow means "lower is better")						
Baseline	Time (s/epcoh)	pearson	spearman	kendall	MAE↓	RMSE↓
MLP	2.22	0.493	0.547	0.415	0.626	0.819
Net ^{2f}	10.42	0.517	0.635	0.525	0.615	0.825
Net ^{2a}	19.83	0.632	0.656	0.553	0.614	0.821
LHNN	260.00	0.801	0.796	0.603	0.581	0.780
Ours	14.79	0.848	0.835	0.646	0.483	0.683

Figure 6: Scattering the models' output (axis-y) and ground-truth (axis-x) (placement stage).

Transfer task (congestion -> wire-length):

- LHNN/Ours: trained on wire-length task
- LHNN/Ours(evaluate): trained on congestion task and evaluated on wire-length task
 - the regressor is re-trained, similar for (fine-tune)
- LHNN/Ours(fine-tune): trained on congestion task and fine-tuned on wire-length task

Table 4: Transfer experiment from congestion prediction to wirelength prediction. Results are evaluated in Grid-level.

Baseline	Time (s/epoch)	pearson	spearman	kendall
MLP	2.22	0.493	0.547	0.415
LHNN (evaluate)	192.45	0.689	0.715	0.563
Ours (evaluate)	9.55	0.799	0.811	0.622
LHNN (fine-tune)	248.96	0.805	0.794	0.612
Ours (fine-tune)	14.8	0.842	0.829	0.639
LHNN	260	0.801	0.796	0.603
Ours	14.79	0.848	0.835	0.646

- 1. There is still a gap between the novel machine learning algorithms and their application in commercial tools.
- 2. Our solution is only applicable to netlists (in logic synthesis stage) and layouts (in placement stage), while data-flow graphs or And-Inverter Graphs (AIGs) in other stages are not supported.

Thank you

Shuwen Yang @ 2022

