NEURAL INFORMATION PROCESSING SYSTEMS

Enhanced Latent Space Blind Model for Real Image Denoising via Alternative Optimization

Chao Ren*, Yizhong Pan, Jie Huang

College of Electronics and Information Engineering Sichuan University, Chengdu, China

Thirty-sixth Conference on Neural Information Processing Systems

Introduction

Image denoising methods:

- Filtering-Based Methods
- Simple.
- Avoiding blurring artifacts caused by their block-wise operations is hard

• Learning-Based Methods

- Model-Based Methods
- Strong mathematical derivations.
- No consideration for real noise and external guidance
- Traditional: Adaptively learn mapping functions from datasets. Have difficulty in learning an excellent mapping function
- Deep Network-Based: Excellent modeling ability. May be over-fitted to AWGN and fail to handle real noise

Challenge:

The challenge is incorporating the rich body of **model-based methods** into the design of the **deep network** for removing **real noise** which is much more complicated than AWGN.

The Proposed Method

Enhanced Latent Space Blind Model for Denoising

Traditional Model-based Method: $\hat{\mathbf{x}} = \arg \min \mathcal{H}(\mathbf{x}, \mathbf{y}) + \mu \varphi(\mathbf{x})$

x : clean image **y** : noisy image $\mathcal{H}(\mathbf{x}, \mathbf{y})$: data fidelity item $\varphi(\cdot)$: any image regularizer

Analysis and Enhancement:

- ✓ Performs a constraint in **pixel domain**
- ✓ **Noise information** is largely ignored
- ✓ Specific image information is not exploited effectively for guidance

Introduce high-dimensional encoding and decoding functions, E and D

Introduce the real noise map **u**

Introduce certain sophisticated guidance information \mathbf{g} from the image

Proposed Method: $\{\hat{\mathbf{z}}, \hat{\mathbf{u}}\} = \arg\min_{\mathbf{z}, \mathbf{u}} \mathcal{H}(\mathbf{z}, \mathbf{u}, \mathbf{y}) + \tau \mathcal{G}(\mathbf{z}, \mathbf{g}) + \eta \psi(\mathbf{u}), s.t., \hat{\mathbf{x}} = D(\hat{\mathbf{z}})$ 3 $\mathcal{G}(\mathbf{z}, \mathbf{g})$: image information guidance term $\psi(\mathbf{u})$: regularizer for noise information

The Proposed Method

□ Self-Correction (SC) Alternative Optimization

• According to traditional alternative optimization algorithm, the previous formula can be solved by splitting it into:

z (reconstruction subproblem)

$$\mathbf{z}^{(i+1)} = \arg\min_{\mathbf{z}} \mathcal{H}(\mathbf{z}, \mathbf{u}^{(i)}, \mathbf{y}) + \tau \mathcal{G}(\mathbf{z}, \mathbf{g})$$

and u (degradation estimation subproblem).

$$\mathbf{u}^{(i+1)} = \arg\min_{\mathbf{u}} \mathcal{H}(\mathbf{z}^{(i+1)}, \mathbf{u}, \mathbf{y}) + \eta \psi(\mathbf{u})$$

where *i* is the iteration number. Considering that the last estimates of z and u are not used in Eq. (1) and the estimated noise map is available during the iterations, we adopt the SC scheme (introducing $z^{(i)}$ and $u^{(i)}$) and specify the form of g.

The Proposed Method

□ Self-Correction (SC) Alternative Optimization

• Then Eq. (1) becomes:

$$\begin{cases} \mathbf{g}^{(i)} = \overline{G(\mathbf{u}^{(i)})}, \\ \mathbf{z}^{(i+1)} = \arg\min_{\mathbf{z}} \mathcal{H}(\mathbf{z}, \mathbf{u}^{(i)}, \mathbf{y}) + \tau \widetilde{\mathcal{G}}(\mathbf{z}, \mathbf{g}^{(i)}, \mathbf{z}^{(i)}) \\ \mathbf{u}^{(i+1)} = \arg\min_{\mathbf{u}} \mathcal{H}(\mathbf{z}^{(i+1)}, \mathbf{u}, \mathbf{y}) + \eta \widetilde{\psi}(\mathbf{u}, \mathbf{u}^{(i)}) = U(\mathbf{z}^{(i+1)}, \mathbf{y}, \mathbf{u}^{(i)}), \end{cases}$$
(2)

 $G(\cdot)$: guidance information generator, $\tilde{\mathcal{G}}(\cdot)$: the joint constraint of GC and SC for z,

 $\tilde{\psi}(\cdot)$: the joint constraint of noise information and SC for **u**,

 $Z(\cdot)$ and $U(\cdot)$ are the optimization solving processes for the z and u subproblems in (2).

Finally, \mathbf{x} can be obtained by applying the LS decoding function D to \mathbf{z} .

SCAOED Network

Implicitly Implement SCAOED Algorithm via Deep Network

 \bigcirc A deep neural network (i.e., ScaoedNet) is constructed by modeling *E*, *D*, *G*, *U*_{*ini*}, *U*, *Z*.

Architecture of the Denoising Network

LS encoding module, LS decoding module, G-module, initial DE network (uini-Net), DE network (u-Net), and RE network (z-Net) are used to implement E, D, G, U_{ini} , U, and Z, respectively.

SCAOED Network

Structures of Different Modules

7

SCAOED Network

□ Feature Multiple-Modulation Attention

☞ FSM module consisting of CIG SA and CIG CA, adopts generated spatial and channel weights to recalibrate the input feature map and obtain fused results.

 \bigcirc DEM module exploits **g** in the implementation of GC to guide the reconstruction of degradation feature map.

Implementation Details:

- **Training Datasets**
 - Div2K, RENOIR and Smartphone Image Denoising Dataset (SIDD)
- Testing Datasets
 - SIDD Benchmark, DnD Benchmark and Nam
- Suggested Parameter Setting
 - Stage number K = 5 and FM2ARB number T = 16.
- Experiment Environment
 - Ubuntu 16.04, NVIDIA RTX 3090 GPU, Inter(R) Core(TM) i7 5.0GHZ 32G

Denoising on Real Noisy Images -- Quantitative Comparison

Table 1: The average PSNR(dB)/SSIM results on DnD benchmark dataset.

Method	Blind/Non-Blind	PSNR↑	SSIM↑
CBM3D[14]	Non-Blind	34.51	0.8507
TNRD[11]	Non-Blind	33.65	0.8306
DnCNN[52]	Blind	32.43	0.7900
FFDNet ⁵³	Non-Blind	37.61	0.9415
DCDicL[57]	Non-Blind	35.90	0.9150
CBDNet[19]	Blind	38.06	0.9421
VDN[48]	Blind	39.38	0.9518
RIDNet ⁵	Blind	39.25	0.9528
AINDNet 22	Blind	39.37	0.9505
InvDN[27]	Blind	39.57	0.9522
DANet 49	Blind	39.47	0.9548
DeamNet[36]	Blind	39.63	0.9531
ScaoedNet	Blind	40.12	0.9603
ScaoedNet [†]	Blind	40.17	0.9597

Table 2: The average PSNR(dB)/SSIM results on SIDD benchmark and validation datasets.

1↑	Method	Blind/	SIDD benchmark		SIDD validation	
07		Non-Blind	PSNR↑	SSIM↑	PSNR↑	SSIM↑
06 00 15 50	CBM3D[14] TNRD[11] DnCNN[52] FFDNet[53]	Non-Blind Non-Blind Blind Non-Blind	25.65 24.73 23.66 29.30	0.685 0.643 0.583 0.694	31.75 26.99 26.20 26.21	0.7061 0.7440 0.4414 0.6052
21 18 28 05 22 48 31	DCDicL[57] CBDNet[19] VDN[48] RIDNet[5] AINDNet[22] InvDN[27] DANet[49] DeamNet[36]	Non-Blind Blind Blind Blind Blind Blind Blind Blind	33.68 33.28 39.26 37.87 38.95 39.28 39.25 39.35	0.860 0.868 0.955 0.943 0.952 0.955 0.955 0.955	33.76 30.83 39.29 38.76 38.96 38.30 39.30 39.40	$\begin{array}{c} 0.8171\\ 0.7541\\ 0.9109\\ 0.9132\\ 0.9123\\ 0.9064\\ 0.9164\\ 0.9169\end{array}$
03 97	ScaoedNet ScaoedNet [†]	Blind Blind	39.44 39.48	0.956 0.957	39.48 39.52	0.9186 0.9187

• The self-ensemble results denoted by the super script † is also presented to maximize potential denoising performance of ScaoedNet.

Denoising on Real Noisy Images -- Visual Results

Figure 4 Real denoising results on DnD Benchmark dataset.

ScaoedNet achieves
the best visual results.

Figure 5 Real denoising results on SIDD validation dataset.

□ Influence of Important Parameters

Table 3 Results on SIDD validation for K-s.					Table S3 L1the multiple	distances a DE networl	nd PSNRs f ks.	or verify	ing the effect	iveness of		
K	1	2	3	4	5	6	K	1	2	3	4	5
PSNR SSIM	39.24 0.9170	39.32 0.9177	39.40 0.9182	39.45 0.9184	39.48 0.9186	39.48 0.9187	L_1 distance \downarrow PSNR \uparrow	5.80 33.16	5.01 34.18	4.48 34.80	4.27 35.21	4.20 35.40
	Table 4	Results o	on SIDD v	alidation	for T -s.		Table S4 Av images by eac	erage PSN ch stage in S	R (dB) and ScaoedNet.	SSIM v	values of the	denoised
7	Table 4'4	Results o	on SIDD v	alidation 12	for T -s. 16	20	Table S4 Avimages by eacStage	erage PSN ch stage in S	R (dB) and ScaoedNet.	SSIM v 3	values of the	denoised

- ← When stage number K reaches 5, PSNR/SSIM converges.
- With the increasing of DE networks, the estimation result becomes more accurate.
- ← Considering both the performance and cost, T=16 is the most suitable choice.
- The proposed ScaoedNet is convergent.

Effectiveness of Network Modules

Table 5 The effectiveness of the NFAE layer.

Method	L_1 distance \downarrow	PSNR↑
with NFAE	5.80	33.16
without NFAE	5.97	32.53
CBDNet[19]	6.11	32.30
AINDNet [22]	6.11	32.92
PRIDNet [56]	6.19	33.01

Figure 6 PSNR/SSIM scores of different ScaoedNet variants.

Table S1 PSNRs (dB) and SSIMs on SIDD validation dataset for ScaoedNet with FSM and SCA respectively.

Table S2 Ablation on FSM and DEM for SIDD validation dataset.

Method	PSNR↑	SSIM↑	FSM	×	×	v	v
ScaoedNet with FSM	39.48	0.9186	DEM	×	~	×	~
ScaoedNet with SCA	39.39	0.9178	PSNR↑/SSIM↑	39.28/0.9164	39.34/0.9167	39.35/0.9171	39.48/0.9186

Computational Cost

Figure 7 The numbers of parameter vs. average PSNR/SSIM values of different models on DnD.

- Moderate parameter number (about 3M).
- The FLOPS and inference time of ScaoedNet with 1 stage, 3 stages and 5 stages for output resolution 512×512 are 212G/0.07s, 640G/0.15s, and 1071G/0.28s, respectively. For the second-best method DeamNet, it is 589G/0.18s.

Thanks!

