

Product Ranking for Revenue Maximization with Multiple Purchases

Renzhe Xu¹, Xingxuan Zhang¹, Bo Li¹, Yafeng Zhang², Xiaolong Chen², Peng Cui¹ ¹Tsinghua University ²Meituan Inc.

General idea

- **Product ranking** is the core problem for revenue-maximizing online retailers
- Most existing works suppose each consumer purchases at most one product
- In this paper,
 - We propose a more realistic consumer choice model to characterize consumer behaviors under multiple-purchase settings
 - We study the optimal product ranking policy to maximize online retailers' revenue in both offline and online settings

Problem setting

- Consider online retailer platforms
 - The platform recommends a list of products to consumers
 - Consumers purchase products according to a choice model
- Characterize consumer choice model with multiple purchases
 - Each Consumer views the list sequentially
 - Attention span and purchase budget
 - maximal number of products that the consumer is willing to view / purchase
 - They are random and obey geometric distributions
- Target: the total revenue achieved by the online retailer

Proposed method ---- offline setting

- Optimal ranking policy when given a consumer's characteristics
 - Sort products in descending order according to the following score

$$\frac{\lambda_i r_i}{1 - q + q(1 - s)\lambda_i}$$

- r_i : the revenue of product *i*
- λ_i : the purchase probability for product *i*
- *q*, *s*: the geometric distribution parameters *w.r.t.* attention span and purchase budget
- Special case ---s = 0
 - The consumer will purchase at most one product
 - The result becomes the same as the ranking policy in [1], which considers the single-purchase setting

Proposed method --- online setting

- Online Learning of the ranking policy
 - The online retailer has no prior knowledge about consumers' characteristics
 - We consider two settings
 - Non-contextual setting: all consumers share the same parameters
 - Contextual setting: consumers have personalized behaviors
 - We develop the Multiple-Purchase-with-Budget UCB (MPB-UCB) algorithms
 - Achieve $\tilde{O}(\sqrt{T})$ regret on the revenue

_	
Ā	Algorithm 1: MPB-UCB (Non-contextual)
1 Ī	nput: Products revenue r and hyper-parameter ϵ_Q .
2 Initialization: $\tilde{\lambda}_{0,k} = 1$ for $k \in [N]$, $\tilde{q}_0 = 1 - \epsilon_Q$, $\tilde{w}_0 = 1 - \epsilon_Q$.	
3 for $t=1:T$ do	
4	Let σ_t be the optimal offline policy from Theorem 4.1 with $\lambda = \tilde{\lambda}_{t-1}$, $q = \tilde{q}_{t-1}$, and
	$s = \tilde{w}_{t-1}/\tilde{q}_{t-1}.$
5	Offer ranking policy σ_t and observe Φ_t , Γ_t , η_t , μ_t .
6	Update statistics $C_{t,k}$, $c_{t,k}$, D_t^Q , d_t^Q , D_t^W , and d_t^W .
7	Calculate $\tilde{\lambda}_{t,k}$, \tilde{q}_t , and \tilde{w}_t by Equations (6) and (8).
8 e	nd

	Algorithm 2: MPB-UCB (Contextual)	
1	Input: Products revenue r and hyper-parameter ϵ_Q , α_Λ , α_Q , and α_W .	
2	Initialization: $\hat{\beta}_0^{\Lambda} = 0, \hat{\beta}_0^Q = 0, \text{and} \hat{\beta}_0^W = 0.$	
3 for $t=1:T$ do		
4	Observe consumer features x_t and $y_{t,k}$ for $k \in [N]$. Let $z_t = \text{vec}(x_t x_t^{\top})$.	
5	Calculate $\tilde{\lambda}_{t,k}$, \tilde{q}_t , and \tilde{w}_t according to Equation (16).	
6	Let σ_t be the optimal ranking policy from Theorem 4.1 with $\lambda = \tilde{\lambda}_t$, $q = \tilde{q}_t$, and $s = \tilde{w}_t / \tilde{q}_t$.	
7	Offer ranking policy σ_t and observe Φ_t , Γ_t , η_t , μ_t .	
8	Calculate statistics Σ_t^{Λ} , ρ_t^{Λ} , Σ_t^Q , ρ_t^Q , Σ_t^W , and ρ_t^W .	
9	Calculate estimated parameters $\hat{\beta}_t^{\Lambda}$, $\hat{\beta}_t^Q$, and $\hat{\beta}_t^W$ according to Equations (12), (13) and (14).	
0 end		

Experiments

- Conduct experiments on both synthetic data and semi-synthetic data
- We plot the regret curve for different settings
- MPB-UCB (Ours) achieves the best performance
 - MPB-UCB beats Single Purchase and Keep Viewing
 - Baselines consider different consumer choice models
 - MPB-UCB beats explore-then-exploit-based methods
 - We have a better exploration-exploitation trade-off

Figure 1: Results on the synthetic data

Figure 2: Results on the semi-synthetic data

7

Thanks!

Paper is available at <u>https://arxiv.org/abs/2210.08268</u> Code is available at <u>https://github.com/windxrz/MPB-UCB</u>