Towards Lightweight Black-Box Attacks Against Deep Neural Networks

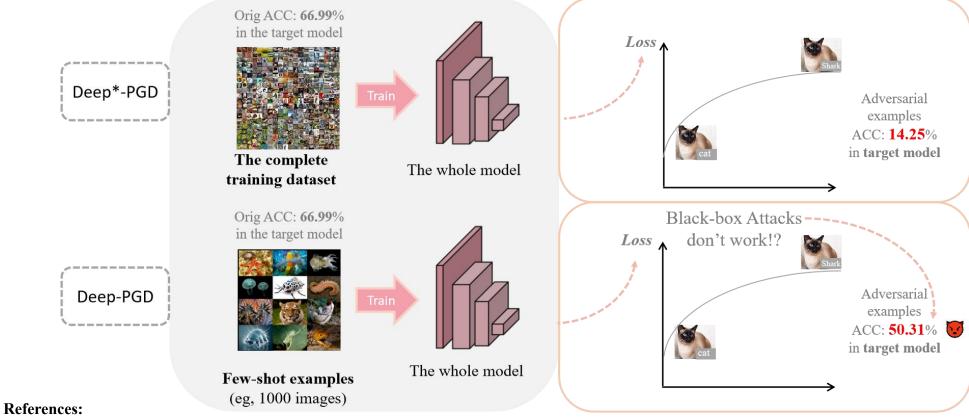
Chenghao Sun¹ Yonggang Zhang² Wan Chaoqun³ Qizhou Wang²

Ya Li⁴ Tongliang Liu⁵ Bo Han² Xinmei Tian^{1*}

¹University of Science and Technology of China ²Hong Kong Baptist University ³Alibaba Cloud Computing Ltd ⁴iFlytek Research ⁵The University of Sydney

Background:

It was usually considered **infeasible** to mount effective black-box attacks with **a few test samples** (eg 1000 images) because adversaries can not train a surrogate model well with limited data.[1]



[1] Q. Li, Y. Guo, and H. Chen. Practical no-box adversarial attacks against dnns. In NeurIPS, 2020.

Background:

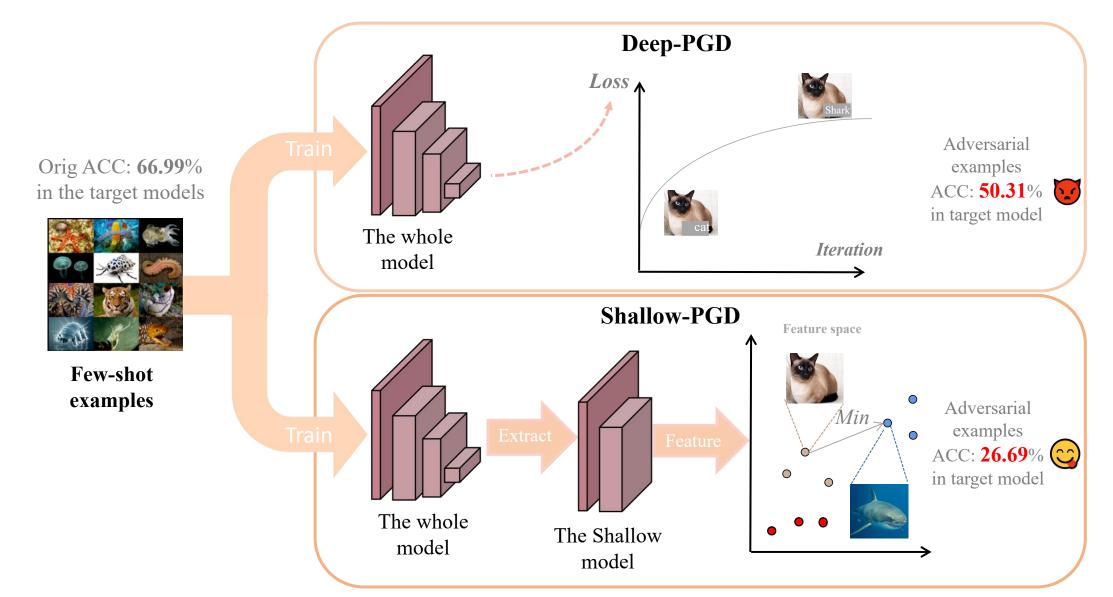
It was usually considered **infeasible** to mount effective black-box attacks with **a few test samples** (eg 1000 images) because adversaries can not train a surrogate model well with limited data.[1]

Existing research:

- (1) Adversarial examples can be generated by perturbing representations at shallow layers of DNNs.[1]
- (2) Regarding the representation of shallow layers, there do not exist critical differences between those models learned from a few data and that of the whole training data.[2]

References:

Lightweight Black-box Attack



Method

Error Transformer:

To further improve the attack performance, we propose Error TransFormer (ETF) to alleviate adverse impact caused by approximation error:

$$\varphi(x; \{w^1 + w^1 A\} \cup \{w \setminus w^1\}) = g((w^1 + w^1 A)x; w \setminus w^1) = g(w^1(x + Ax); w \setminus w^1) = \varphi(x + Ax; w)$$

$$x_{adv} = \arg\min_{\|x'-x\|_p \le \epsilon} \max_{\|\Delta_s\|_p \le \tau, \|\Delta_g\|_p \le \tau} d(\varphi(x_g + \Delta_g; w), \varphi(x' + \Delta_s; w)),$$

φ: The shallow layers of lightweight sorrogate model

x: The images

 x_{g} : The guide images

 $\varphi(x, w)$: The feature of shallow layers

g: the function parameterized with $w \mid w^l$ used for processing the first layer's outputs

w: The parameters of model φ

 w^{l} : The first layer parameters of model φ

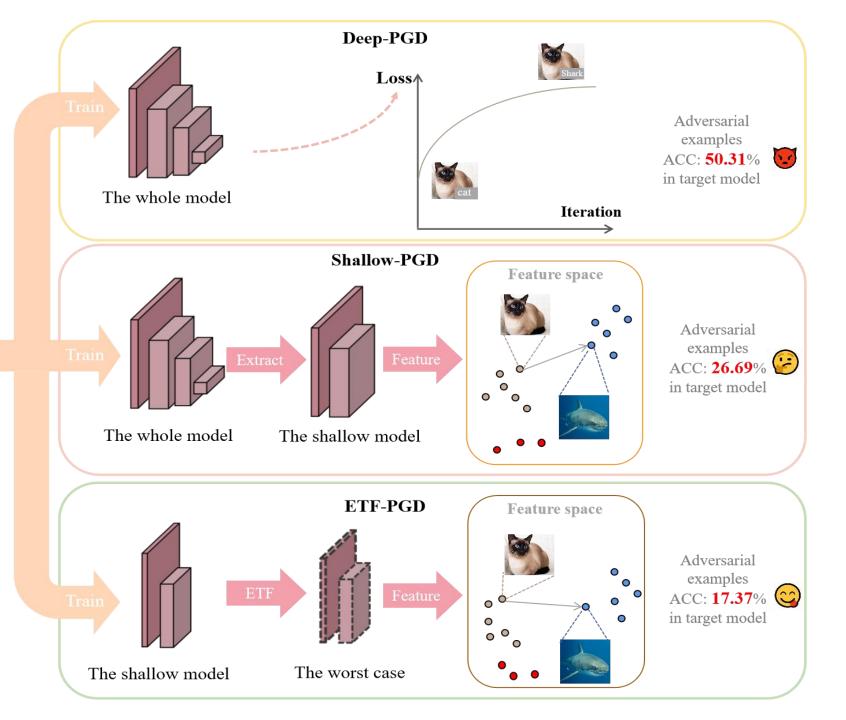
 w/w^{l} : The parameters of model φ with the first layer

 $w^{l}A$: The approximation error between the lightweight model and the target model

Method

Orig ACC: **66.99**% in the target models

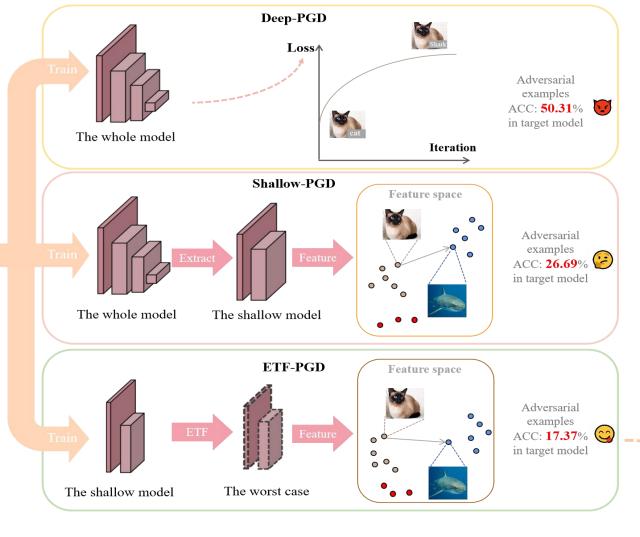
Few-shot examples



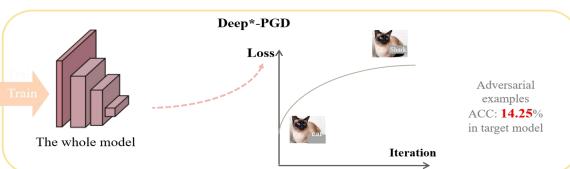
Lightweight Black-box Attack



Few-shot examples eg: 1000 images



Black-box Attack



Close

Experiment

Table 1: The accuracy (%) of 7 normally trained target models evaluated on 1000 adversarial examples generated by lightweight black-box attacks or existing black-box attacks, under $\epsilon \leq 0.1$. Shallow-(PGD, MI, DI, TI) means applying PGD, MI, DI and TI to the shallow layers of the model. Deep-(PGD, MI, DI and TI) means applying PGD, MI, DI and TI to the model's output. EFT-(PGD, MI, DI and TI) means applying ETF combined with PGD, MI, DI or TI to the shallow layers. (The lower, the better)

Model	VGG19 [51]	Inception v3 53	RN152	DenseNet [23]	SENet [22]	WRN [59]	MobileNet v3[49]	Average
Clean	67.43	64.36	74.21	73.34	51.28	73.22	65.06	66.99
Autoattack 9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Deep-PGD	49.01±0.23	52.26±0.25	60.71±0.74	57.92±0.37	27.94±0.18	60.18±0.64	44.20±0.63	50.31±0.52
Deep-MI	38.92 ± 0.43	42.37±0.37	49.53±0.49	49.06±0.89	19.44±0.75	49.11±0.82	33.46±0.80	40.69±0.96
Deep-DI	43.34±0.40	43.13±0.52	53.78±0.38	55.41±0.53	23.53 ± 0.52	51.77±0.48	38.14±0.74	44.15±0.60
Deep-TI	49.46±0.52	49.64±0.27	58.89 ± 0.71	58.75±0.30	26.19±0.16	56.31±0.58	44.02±0.46	49.03±0.51
Shallow-PGD	22.93±0.33	31.07±0.58	34.71±0.67	36.20±0.87	13.08±0.36	32.16±0.66	16.65±0.54	26.69±0.49
Shallow-MI	22.62±0.25	30.83 ± 0.48	34.05±0.27	35.74±0.76	12.31 ± 0.41	29.98±0.65	17.72±0.31	26.17±0.56
Shallow-DI	22.14±0.39	29.78 ± 0.17	35.51 ± 0.33	35.79 ± 0.61	8.99 ± 0.42	30.61±0.88	16.88±0.47	25.67±0.55
Shallow-TI	21.82±0.45	28.54 ± 0.34	34.78 ± 0.15	34.71±0.39	7.96 ± 0.48	30.14 ± 0.85	15.77±0.51	24.81±0.37
ETF-PGD	14.11±0.24	20.22±0.29	24.20±0.34	24.74±0.37	6.96 ± 0.44	20.73±0.28	10.66±0.31	17.37±0.35
ETF-MI	15.32 ± 0.52	19.97±0.28	26.25±0.14	28.10±0.65	7.02 ± 0.43	22.21±0.66	12.23±0.32	18.72±0.45
ETF-DI	14.77±0.35	20.63 ± 0.32	23.71±0.83	25.70±0.51	7.23 ± 0.37	20.22±0.64	11.53±0.50	17.68±0.47
ETF-TI	15.45±0.37	18.03 ±0.34	22.63 ±0.45	24.20 ±0.68	6.94 ±0.41	21.53±0.25	12.88±0.34	17.38±0.71
Deep*-PGD	12.43±0.51	28.15±0.43	16.54±0.49	12.61±0.22	7.09±0.32	13.33±0.54	9.64±0.28	14.25±0.37
Deep*-MI	11.77±0.75	25.14±0.56	18.10±0.64	13.72±0.34	4.26 ± 0.35	14.61±0.37	8.30 ± 0.37	13.70 ± 0.68
Deep*-DI	7.61 ± 0.41	18.17±0.45	8.23 ± 0.33	9.90±0.57	6.66±0.34	9.72±0.42	7.91±0.46	9.74 ± 0.55
Deep*-TI	9.55 ± 0.48	23.48±0.86	13.51±0.46	10.63±0.64	6.46±0.26	10.92±0.61	9.55±0.35	12.01±0.43

Deep* refers to the attacks mounted in the model trained on the large-scale training data.

Experiment

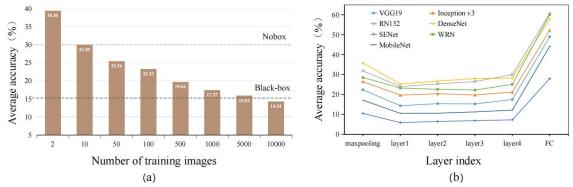


Figure 1: (a) How the lightweight attack performance of our approach varies with the number of images used for training the surrogate model. (b) The influence of low-level feature extraction at different layers of ResNet-18 on lightweight black-box attack performance. (The lower, the better)

Table 3: The performance of different attacks on the adversarial trained ResNet-50 [13]. Therein, ϵ refers to the constraint ℓ_{∞} in adversarial examples for adversarial training. The accuracy (%) is evaluated on 1000 adversarial examples. $\epsilon = 0.1$ (the lower the better). White-box refers to Auto-Attack [9].

Adv_model	Clean	Clean ETF Black-box No		No-box	White-box	
		ours	[40]	[34]	[9]	
$\epsilon = 0/255$	69.43	16.97	8.20	24.53	0.00	
$\epsilon = 4/255$	55.62	29.13	48.11	39.62	0.00	
$\epsilon = 8/255$	41.68	26.14	38.24	35.87	0.48	

Table 4: Model accuracy (%) under lightweight black-box attacks under challenging scenarios, where supervision information or the in-distribution data are unavailable, named Unsupervised and OOD.

Model	VGG19 [51]	Inception v3[53]	RN152 [21]	DenseNet [23]	SENet [22]	WRN	MobileNet v3[49]	Average
Clean	67.43	64.36	74.21	73.34	51.28	73.22	65.06	66.99
Supervised Unsupervised OOD	14.11 15.54 6.13	20.22 19.16 21.72	24.20 26.27 25.44	24.74 23.75 21.89	7.66	20.73 22.79 24.33	10.66 11.43 7.16	17.37 18.08 15.96

Experiment

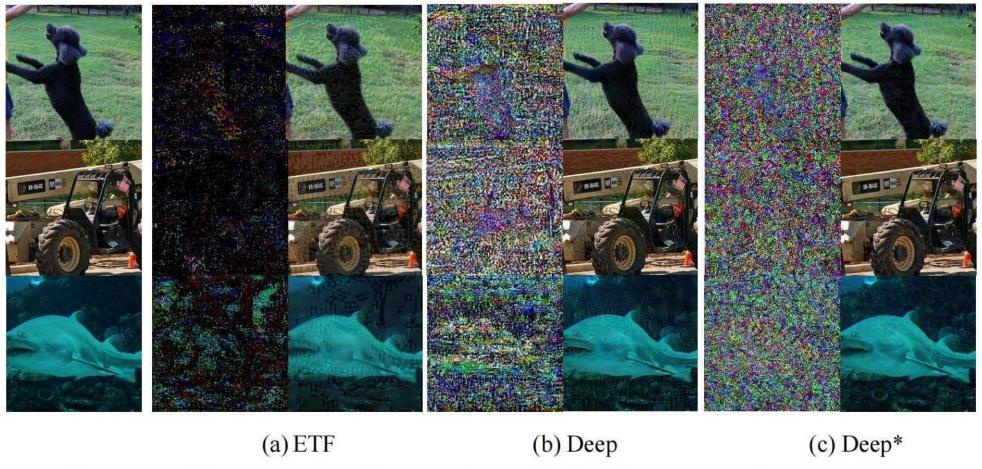


Figure 2: Adversarial examples crafted by: a) ETF, b) Deep, and c) Deep* attacks.

Thanks for your listening!