Efficient Knowledge Distillation from Model Checkpoints

Chaofei Wang, Qisen Yang, Rui Huang, Shiji Song, Gao Huang Department of Automation, Tsinghua University

Tsinghua University

Background

Knowledge distillation: train compact models (students) with the supervision of large and strong models (teachers).

Background

Typical teachers: a well trained network or an ensemble of them.

$$L_{\text{KD}} = \alpha H(Y_{\text{true}}, P_{\text{S}}) + (1 - \alpha) H(P_{\text{Tfull}}^{\tau}, P_{\text{S}}^{\tau}) \qquad L_{\text{EKD}} = \alpha H(Y_{\text{true}}, P_{\text{S}}) + (1 - \alpha) H(\frac{1}{M} \sum_{i=1}^{M} P_{\text{Tfull}}^{\tau}, P_{\text{S}}^{\tau}).$$

$$CE \qquad \text{KD}$$

However, high performing models may not necessarily be good teachers.

An extreme example: if $P_{T^{\text{full}}} \approx Y_{\text{true}}$, KD would fail.

Exploratory Experiments

Intermediate Teacher vs. Full Teacher: The full teacher is a fully converged teacher model while the intermediate teacher is a checkpoint model in the training trajectory (e.g. half-trained model).

Exploratory Experiments

Snapshot Ensemble^[1] vs. Full Ensemble: The Full Ensemble is the standard ensemble of several independently trained full teacher models. The Snapshot Ensemble is an ensemble of several intermediate teacher models along the same optimization path.

[1] Huang, G., Li, Y., Pleiss, G., Liu, Z., Hopcroft, J. E., & Weinberger, K. Q. (2017). Snapshot ensembles: Train 1, get m for free. *arXiv preprint arXiv:1704.00109*.

Why can intermediate models win?

Visualization: class correlation information of T^{inter} and T^{full}.

Observation: T^{inter} retains more class correlation information than T^{full} . For T^{full} , it is hard to reveal sufficient class correlation information by applying a high temperature to soften the network prediction.

Why can intermediate models win?

Information Bottleneck and Deep Neural Network

The optimization goal of DNN^[2]: $\min_{F} \{I(X;F) - \beta I(F;Y)\}$

Inference: a fully converged model tends to be overconfident and may already have collapsed representations for non-targeted classes.

[2] Shwartz-Ziv, R., & Tishby, N. (2017). Opening the black box of deep neural networks via information. arXiv preprint arXiv:1703.00810.

How to select the optimal model checkpoints?

Solving the optimization problem:

models are selected at different epochs. The best results are **bold-faced**.

 $\max_{F} \left\{ I(X;F) + I(Y;F) \right\},\$

where F belongs to the set of representations in intermediate teacher models.

Network structure		Accuracy of T&S		KD accuracy of different intermediate teachers				
Т	S	Т	S	$T^{0.3}$	$T^{0.5}$	$T^{0.7}$	T^{full}	T^*
WRN-40-2	WRN-40-1	76.53	70.38	72.34±0.10	72.76±0.24	73.08±0.05	72.68±0.10	73.26 ±0.03
	MobileNetV2		64.49	$68.21{\pm}0.33$	68.99 ±0.12	$68.54{\pm}0.07$	$68.03 {\pm} 0.34$	$68.58{\pm}0.34$
ResNet-110	ResNet-32	73.41	70.16	$70.74{\pm}0.18$	$72.49 {\pm} 0.32$	$72.46 {\pm} 0.30$	$72.48{\pm}0.22$	72.63±0.13
	MobileNetV2		64.49	67.84±0.26	68.79±0.17	69.01 ±0.20	68.63±0.35	68.99±0.33
Average		74.97	67.38	69.78	70.76	70.77	70.46	70.87

Table 3: KD Results of the optimal intermediate models on CIFAR-100. The intermediate teacher

Take-aways

Enriching the "dark knowledge" of the teacher is more important than Improving the performance of the teacher.

>T^{0.5} is generally can be an more efficient teacher than T^{full}.

Snapshot Ensemble can be an more efficient teacher than Full Ensemble.

 $> I(X; F_t)$ can be used to explain the "dark knowledge". More $I(X; F_t)$ is the key reason that T^{inter} can beat T^{full}.

Thanks!