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Introduction

e Multi-label classification - predict set of all relevant labels (output choices)
for a query p— -
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Introduction

e Typical approach to solve multi-label classification
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Introduction

e Many real-world scenarios (recommendation, openQA, etc) have very
large output space i.e. L in millions/billions s —
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Computing relevance for every
label becomes very expensive




Existing Approaches

Indexer 7 efficiently samples only a few label indices, quality of 7 is
important
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Existing Approaches

Popular choices for search index - partition tree-based and ANNS-based
¢(z) mrmn ¢(z) l:I:l:I—{
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Existing Approaches

e Both of these approaches fix their index structure before training
e Search performance limited to the quality of choices made during initialization
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ELIAS

e Relaxes partition tree-based index to weighted graph-based index
e Parameterize cluster-to-label edges as learnable adjacency matrix

e Learn A end-to-end with rest of the model parameters (encoder, classifiers)

ELIASZ Cluster-to-label assignments
as learnable adjacency matrix

Clusters A
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ELIAS model

e Model parameters - o, W, A, W,




ELIAS forward
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ELIAS forward

Step 1
™ Score all clusters =3¢ ~ W¢ X ¢(z)
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ELIAS forward

— Score all clusters—» 3¢ ~ W¢ X ¢(z)
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ELIAS forward

Score all clusters—» 3¢ ~ W x ¢(x)

x¢(x) Select top clusters —» argtop-b(3¢)
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ELIAS forward

Score all clusters—»5¢ ~ W¢ X ¢(x)

g

x¢(x) Select top clusters —» argtop-b(3c)

Clusters

3
S
3
3

Transformer

Score all potential paths through top clusters
Encoder

S norm
*
Sc*ag;

- o o o o = o = P

-

Select top K labels based on path scores




ELIAS forward

Score all clusters—» 3¢ ~ W X ¢(x)
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x¢(z) Select top clusters —» argtop-b(3¢)
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Evaluate label classifier for all top K labels

Final score of £ : 8. * apy™ * o (w; ¢(z))




ELIAS forward

Score all clusters—» 3¢ ~ W X ¢(x)

2

x¢(z) Select top clusters —» argtop-b(3¢)
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ELIAS optimization

e Computational challenge - operating on full adjacency matrix can be
very expensive for web-scale datasets

e Optimization challenge - because of flexibility in the model to assign a
label to various clusters, it becomes hard for a label to get confidently
assigned to only a few relevant clusters



ELIAS optimization

e Computational challenge - operating on full adjacency matrix can be
very expensive for web-scale datasets

- Learn a row-wise sparse adjacency matrix

e Optimization challenge - because of flexibility in the model to assign a
label to various clusters, it becomes hard for a label to get confidently
assigned to only a few relevant clusters

- Train in two stages



ELIAS staged training

e Stage 1: fix A as traditional partition clusters and train ¢, W¢, W,
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ELIAS staged training

e Initialize an approximate row-wise sparse A based on weighted count of
number of times cluster ¢ gets assigned to positives of label £ by stage 1



ELIAS staged training

e Stage 2: train full model i.e. ¥, W, W, and non-zero entries of A

L@Q »



Experiments

e State-of-the-art on several large-scale extreme classification benchmarks

Amazon-670K Wikipedia-500K
Method P@1 P@3  P@5 Method P@1 P@3 | P@5
AttentionXML 47.58 | 42.61 H 38.92 AttentionXML 76.95 | 58.42 | 46.14
LightXML 49.10 | 43.83 | 39.85 LightXML 77.78 | 58.85 | 45.57
XR-Transformer | 50.11 | 44.56 | 40.64 XR-Transformer 79.40 | 59.02 § 46.25
ELIAS 50.63 | 45.49 | 41.60 ELIAS 79.00 | 60.37 | 46.87

ELIAS++ 53.02 | 47.18 @ 42.97 ELIAS++ 81.26 | 62.51 | 48.82



Experiments

e Upto 4% better at R@100 than the next best method on Amazon-670K
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Thank You!

e Paper - https://arxiv.org/pdf/2210.08410.pdf
e Code - https://qithub.com/nilesh2797/ELIAS

e Reach out - nilesh@cs.utexas.edu
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