

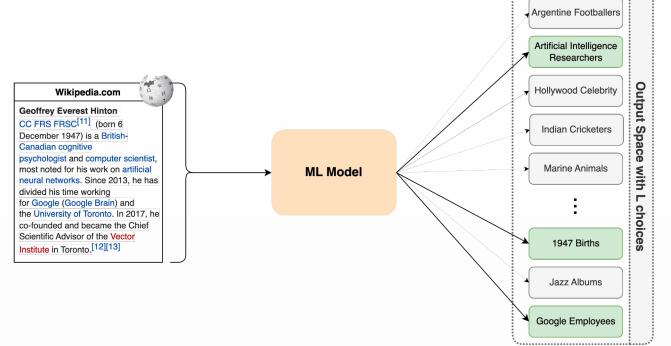
End-to-End Learning to Index and Search in Large Output Spaces

Nilesh Gupta, Patrick H. Chen, Hsiang-Fu Yu, Cho-Jui Hsieh, Inderjit S. Dhillon

Nilesh Gupta PhD Student, The University of Texas at Austin

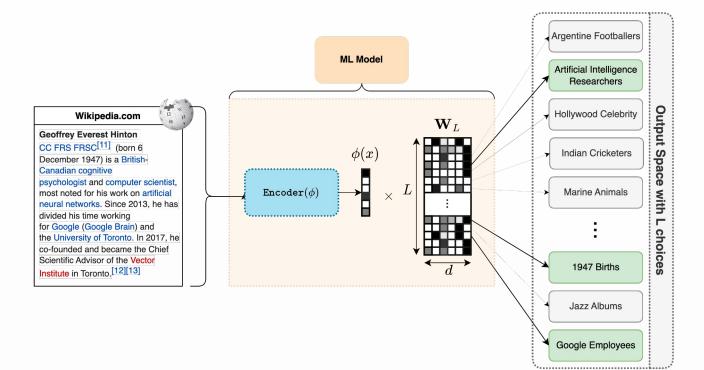
Introduction

Multi-label classification - predict set of all relevant labels (output choices)
for a query



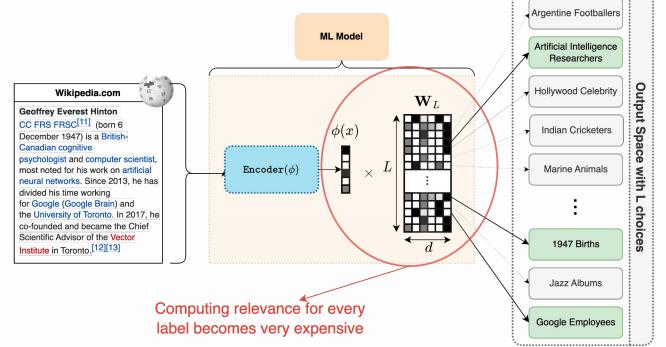
Introduction

• Typical approach to solve multi-label classification



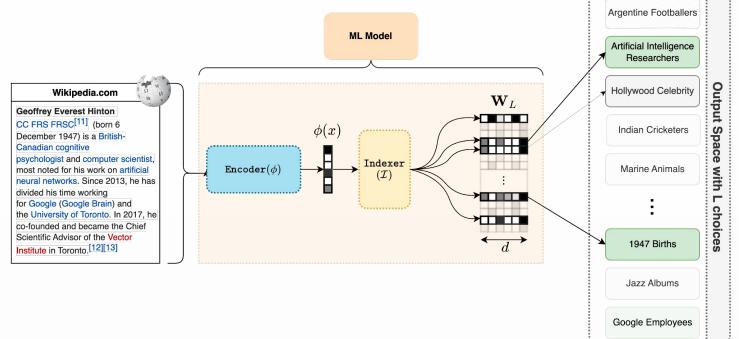
Introduction

Many real-world scenarios (recommendation, openQA, etc) have very large output space i.e. L in millions/billions



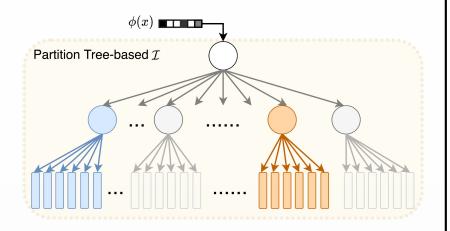
Existing Approaches

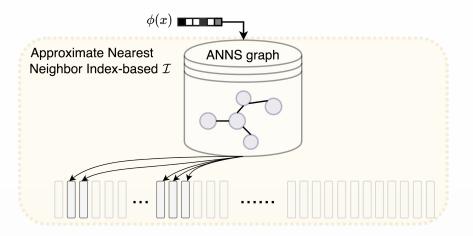
Indexer *I* efficiently samples only a few label indices, quality of *I* is important



Existing Approaches

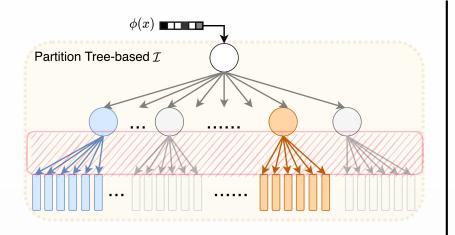
• Popular choices for search index - partition tree-based and ANNS-based

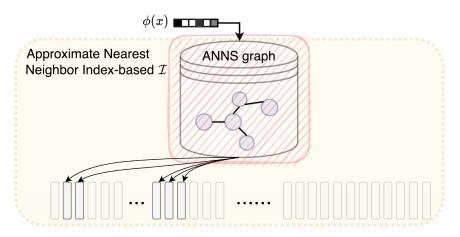




Existing Approaches

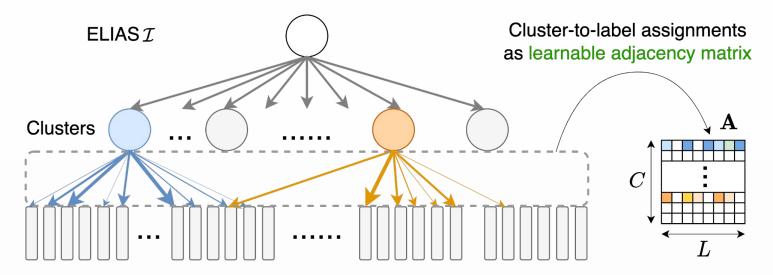
- Both of these approaches fix their index structure before training
- Search performance limited to the quality of choices made during initialization





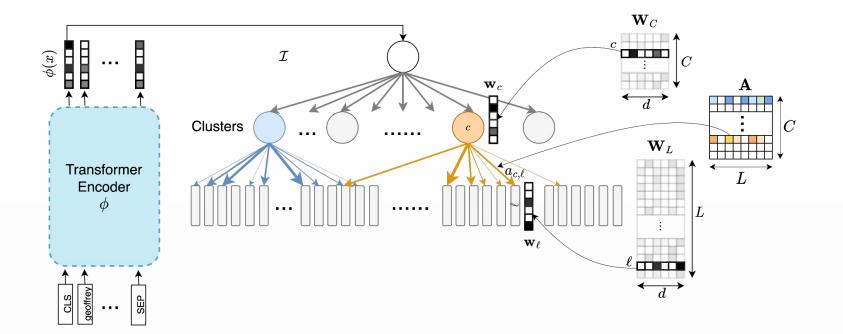
ELIAS

- Relaxes partition tree-based index to weighted graph-based index
- Parameterize cluster-to-label edges as learnable adjacency matrix
- Learn A end-to-end with rest of the model parameters (encoder, classifiers)



ELIAS model

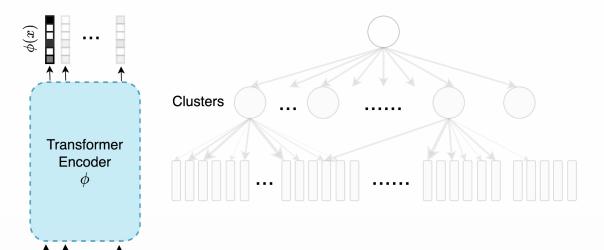
• Model parameters - ϕ , \mathbf{W}_C , \mathbf{A} , \mathbf{W}_L



CLS

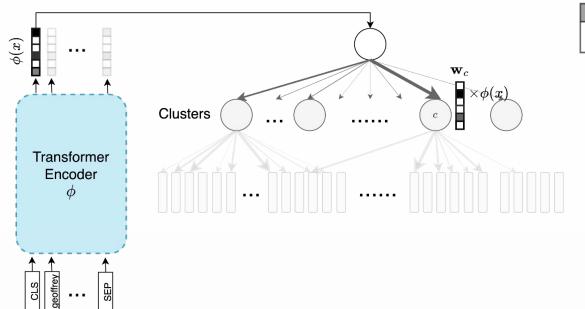
...

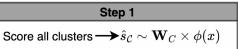
SEP

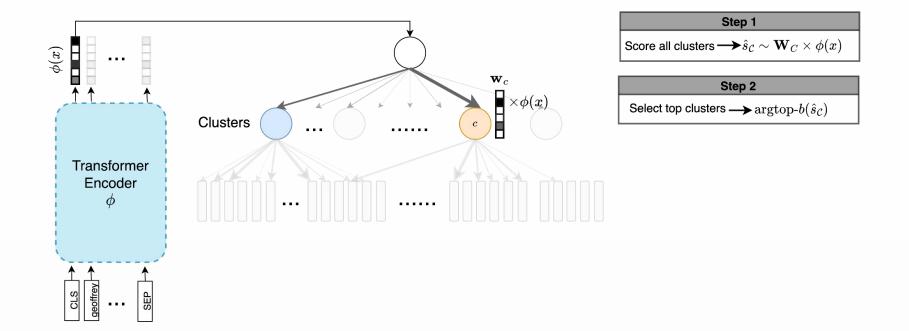


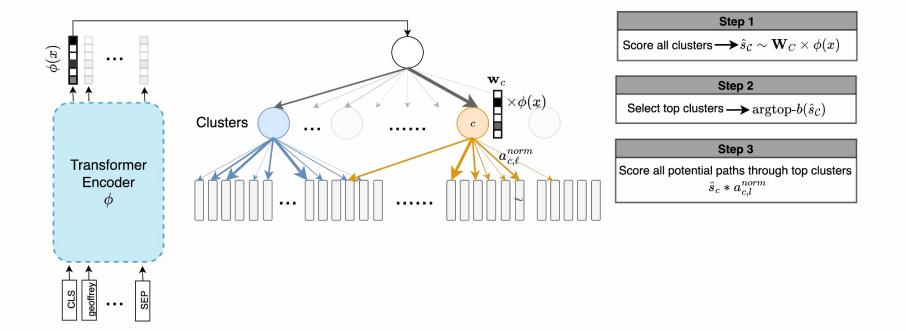
CLS

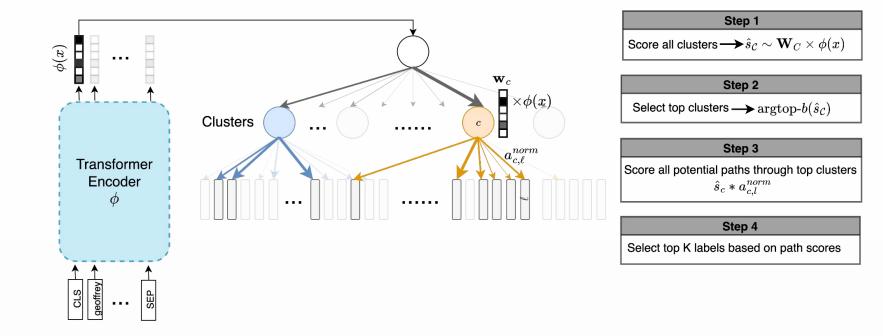
...

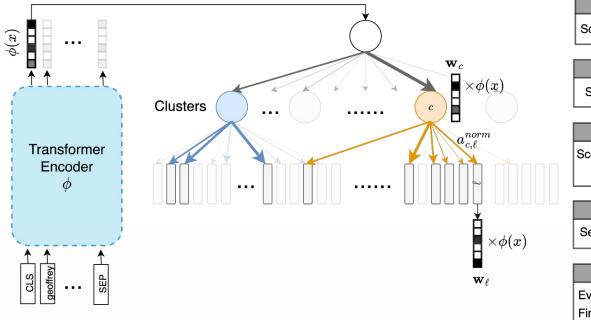












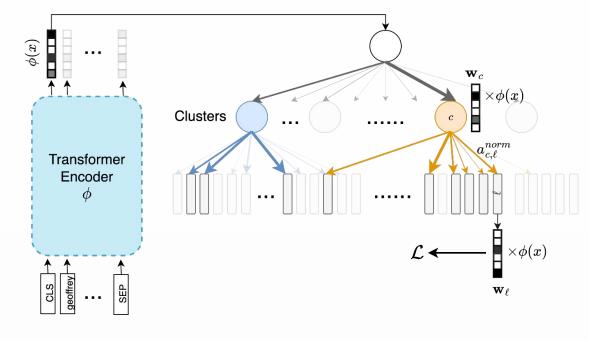
 $egin{array}{c} {\sf Step 1} \ {\sf Score all clusters} {igstarrow} \hat{s}_{\mathcal{C}} \sim {f W}_C imes \phi(x) \end{array}$

Step 2
Select top clusters
$$\longrightarrow \operatorname{argtop-} b(\hat{s}_{\mathcal{C}})$$

Step 3
core all potential paths through top clusters
$\hat{s}_{c} st a_{c,l}^{norm}$

Step 4
elect top K labels based on path scores

Step 5			
Evaluate label classifier for all top K labels			
Final score of $\ell: \hat{s}_c * a_{c,l}^{norm} * \sigma(\mathbf{w}_\ell^T \phi(x))$			



Step 1	
Score all clusters $ \longrightarrow \hat{s}_{\mathcal{C}} \sim \mathbf{W}_{C} imes \phi(x)$	

Step 2
Select top clusters
$$\longrightarrow \operatorname{argtop-} b(\hat{s}_{\mathcal{C}})$$

Step 3		
Score all potential paths through top clusters		
$\hat{s}_{c} st a_{c,l}^{norm}$		

Step 4
Select top K labels based on path scores

Step 5
Evaluate label classifier for all top K labels
Final score of $\ell: \hat{s}_c * a_{c,l}^{norm} * \sigma(\mathbf{w}_\ell^T \phi(x))$

ELIAS optimization

• **Computational challenge** - operating on full adjacency matrix can be very expensive for web-scale datasets

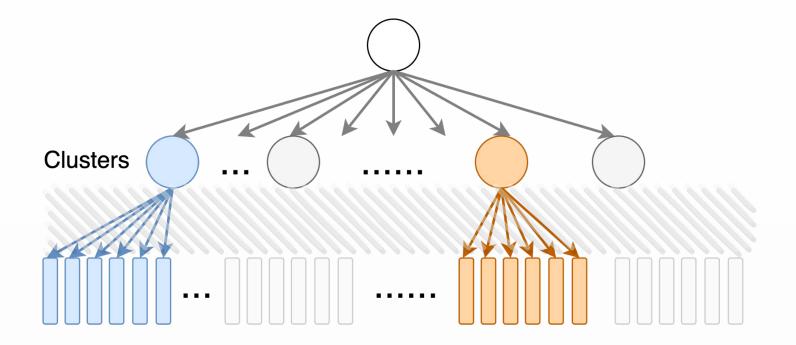
 Optimization challenge - because of flexibility in the model to assign a label to various clusters, it becomes hard for a label to get confidently assigned to only a few relevant clusters

ELIAS optimization

- **Computational challenge** operating on full adjacency matrix can be very expensive for web-scale datasets
- Learn a row-wise sparse adjacency matrix
- Optimization challenge because of flexibility in the model to assign a label to various clusters, it becomes hard for a label to get confidently assigned to only a few relevant clusters
- Train in two stages

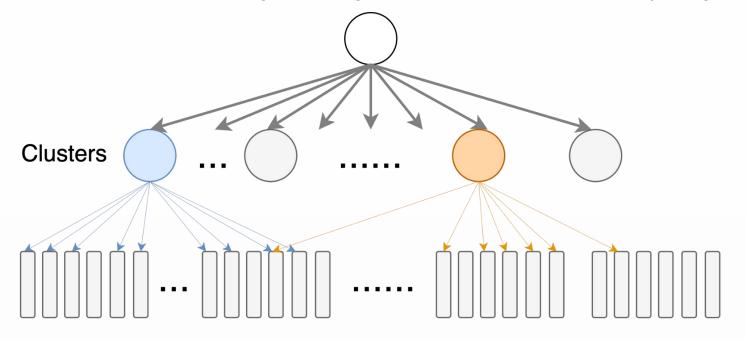
ELIAS staged training

• Stage 1: fix A as traditional partition clusters and train ϕ , \mathbf{W}_C , \mathbf{W}_L



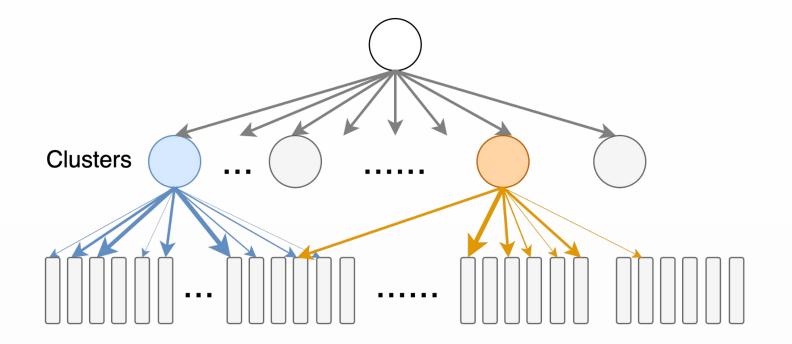
ELIAS staged training

• Initialize an approximate row-wise sparse A based on weighted count of number of times cluster c gets assigned to positives of label ℓ by stage 1



ELIAS staged training

• Stage 2: train full model i.e. ϕ , W_C , W_L , and non-zero entries of A



Experiments

• State-of-the-art on several large-scale extreme classification benchmarks

Amazon-670K

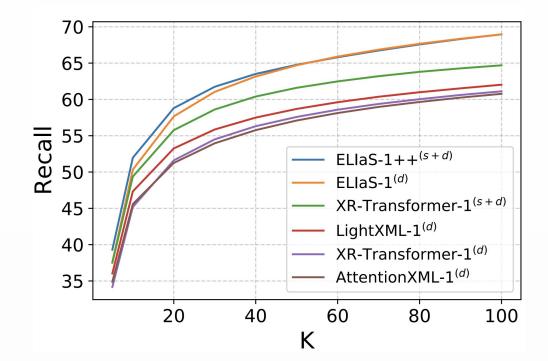
Wikipedia-500	0K
---------------	----

Method	P@1	P@3	P@5
AttentionXML	47.58	42.61	38.92
LightXML	49.10	43.83	39.85
XR-Transformer	50.11	44.56	40.64
ELIAS	<u>50.63</u>	<u>45.49</u>	<u>41.60</u>
ELIAS++	53.02	47.18	42.97

Method	P@1	P@3	P@5
AttentionXML	76.95	58.42	46.14
LightXML	77.78	58.85	45.57
XR-Transformer	79.40	59.02	46.25
ELIAS	<u>79.00</u>	<u>60.37</u>	<u>46.87</u>
ELIAS++	81.26	62.51	48.82

Experiments

• Upto 4% better at R@100 than the next best method on Amazon-670K



Thank You!

- Paper https://arxiv.org/pdf/2210.08410.pdf
- Code <u>https://github.com/nilesh2797/ELIAS</u>
- Reach out nilesh@cs.utexas.edu