

Visual Concept Tokenization

NeurIPS 2022

Tao Yang, Yuwang Wang, Yan Lu, Nanning Zheng

Motivation

Our Motivation is:

- Obtaining the human-like perception ability of abstracting visual concepts from concrete pixels has always been fundamental and important.
- We are particularly interested in finding a general way to learn visual concepts from pixels, which covers two branches, disentangled representation learning and scene decomposition.
- VCT extracts the visual concept inside a given image as a set of tokens, serving as a general solution for visual concept learning, similar to word embeddings in Natural Language Processing (NLP).

Background: Disentanglement

Disentangled representation should reflect the factors of variations behind the observed data of the world, and one latent unit is only sensitive to changes of an individual factor.

For **disentangled representation learning**, the goal is learning to extract such representations of the factors from the images.

Definition of visual concepts token (VCT)

- Concept Prototypes
 - Embeddings of different visual concepts prototypes (meta concepts).
 - A meta concept is represented by a single embedding.
 - Dataset-level concept (for the dataset).
 - A set of embeddings $\{c_1, c_2, \dots, c_n\}$ of a dataset.
- Concept Tokens
 - The value embedding of different concept of a single image.
 - Image-level concept (for a single image)
 - A set of embeddings $\{v_{1i}, v_{2i}, \dots v_{ni}\}$ of a single image.

Properties for VCT & disentanglement

- What should be a good concept prototype?
 - A disordered set of dataset-level embedding
 - Query the corresponding concept from data
 - Different concept prototype are disentangled
- What should be a good concept tokens?
 - A disordered set of image-level embedding
 - The extraction of concept tokens should be independent
 - The concept tokens can be decoded back to data

Method (Encoder part)

Method (Decoder part)

Method

Figure 1: The framework of Visual Concept Tokenization (VCT). An image is represented as a set of concept tokens, and each token reflects a visual concept, such as green object color, blue background color. The concept prototypes and image queries are shared across different images.

Method

Figure 2: Illustration of Concept Disentangling Loss. The second concept token (labeled in green color) is substituted (from 1 to 2) to create the visual variation. Concept tokens $\{a,a,a\}$ and $\{b,b,b\}$ are the outputs for inputing $\{1,1,1\}$ and $\{1,2,1\}$ to detokenizing and tokenizing, respectively.

$$\Delta C = \mathcal{V}_T(\mathcal{I}_T(x_i')) - \mathcal{V}_T(\mathcal{I}_T(\hat{x}_i')).$$

 $\mathcal{L}_{dis} = CrossEntropy(norm(\Delta C), l),$

 $\mathcal{L} = \mathcal{L}_{rec} + \lambda_{dis} \mathcal{L}_{dis}$

Experiments

• Disentanglement results

Method	Cars3D		Shapes3D		MPI3D		
	FactorVAE score	DCI	FactorVAE score	DCI	FactorVAE score	DCI	
VAE-based:							
FactorVAE β -TCVAE	$\begin{array}{c} 0.906 \pm 0.052 \\ 0.855 \pm 0.082 \end{array}$	$\begin{array}{c} 0.161 \pm 0.019 \\ 0.140 \pm 0.019 \end{array}$	$\begin{array}{c} 0.840 \pm 0.066 \\ 0.873 \pm 0.074 \end{array}$	$\begin{array}{c} 0.611 \pm 0.082 \\ 0.613 \pm 0.114 \end{array}$	$\begin{array}{c} 0.152 \pm 0.025 \\ 0.179 \pm 0.017 \end{array}$	$\begin{array}{c} 0.240 \pm 0.051 \\ 0.237 \pm 0.056 \end{array}$	
GAN-based:							
InfoGAN-CR	0.411 ± 0.013	0.020 ± 0.011	0.587 ± 0.058	0.478 ± 0.055	0.439 ± 0.061	0.241 ± 0.075	
Pre-trained GAN-based:							
LD	0.852 ± 0.039	0.216 ± 0.072	0.805 ± 0.064	0.380 ± 0.062	0.391 ± 0.039	0.196 ± 0.038	
CF	0.873 ± 0.036	0.243 ± 0.048	0.951 ± 0.021	0.525 ± 0.078	0.523 ± 0.056	0.318 ± 0.014	
GS	0.932 ± 0.018	0.209 ± 0.031	0.788 ± 0.091	0.284 ± 0.034	0.465 ± 0.036	0.229 ± 0.042	
DS	0.871 ± 0.047	0.222 ± 0.044	0.929 ± 0.065	0.513 ± 0.075	0.502 ± 0.042	0.248 ± 0.038	
DisCo	0.855 ± 0.074	0.271 ± 0.037	0.877 ± 0.031	0.708 ± 0.048	0.371 ± 0.030	0.292 ± 0.024	
Concept-based:							
COMET VCT (Ours)	$\begin{array}{c} 0.339 \pm 0.008 \\ \textbf{0.966} \pm \textbf{0.029} \end{array}$	0.024 ± 0.026 0.382 ± 0.080	$\begin{array}{c} 0.168 \pm 0.005 \\ \textbf{0.957} \pm \textbf{0.043} \end{array}$	$0.002 \pm 0.000 \\ 0.884 \pm 0.013$	$\begin{array}{c} 0.145 \pm 0.024 \\ \textbf{0.689} \pm \textbf{0.035} \end{array}$	$\begin{array}{c} 0.005 \pm 0.001 \\ \textbf{0.475} \pm \textbf{0.005} \end{array}$	

Qualitative Results (Shape3D) & Ablation study

Swapping latent concept on (a) Shapes3D

Method	MIG	DCI
Patch + VCT	0.361	0.668
AE + VCT	0.484	0.802
pretrained AE + VCT	0.560	0.849
pretrained VQ-VAE + VCT	0.525	0.884
AE + VCT wo \mathcal{L}_{dis}	0.165	0.692
pretrained VQVAE + VCT wo \mathcal{L}_{dis}	0.286	0.731
w/ self-attention	0.000	0.008
wo detach	0.392	0.871
w/ pos embedding	0.525	0.884
CNN DeTokenizer	0.157	0.847
Transformer DeTokenizer	0.467	0.821
Concept DeTokenizer	0.525	0.884
batchsize = 16	0.497	0.862
batchsize = 32	0.525	0.884
batchsize = 64	0.535	0.900
tokens number = 10	0.533	0.867
tokens number = 20	0.525	0.884
tokens number $= 30$	0.493	0.885

Qualitative Results (MPI-3D)

Experiments

• Scene decomposition

(a1) Light+objects+objects (a2) Objects+objects (b) Interpretation

(c) Decomposition

Shifted images on ImageNet dog

Shifted images on LSUN cat

Experiments

• CLIP results:

Figure 6: CLIP-based (a) text editing and (b) text decoding. The white arrow means decoding.

Summary

- We present a **general solution** to extract visual concepts from concrete pixels, which can achieve **disentangled representation learning** and **scene decomposition**.
- We build a transformer autoencoder, including Concept Tokenizer and Detokenizer, to represent an image into **a set of tokens**, and **each** token **reflects a visual concept**.
- We propose a Concept Disentangling Loss to facilitate the **mutual exclusivity** of the visual concept tokens.
- VCT can be deployed to the intermediate representations for learning visual concepts.

Code is available at: https://github.com/ThomasMrY/VCT