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Open-set Recognition (OSR)

 Traditional machine learning implicitly follows a 

close-set assumption
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Open-set Recognition (OSR)

 In many practical scenarios, some test samples 

inevitably belong to none of the known classes
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Close-set models will classify novel samples into known classes!
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Open-set Recognition (OSR)

 In many practical scenarios, some test samples 
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How to evaluate model performance in this complicated setting?

✓ Correctly classify 

close-set samples
Goal 1

✓ Discriminate open-set samples 

from close-set ones
Goal 2
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Traditional metrics for OSR

 Classification-based ones
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Multiclass classification

（Accuracy）
Novelty detection

（AUROC）

Traditional metrics for OSR

Novelty-detection-based ones
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✓ Correctly classify 

close-set samples
Goal 1

✓ Discriminate open-set samples 

from close-set ones
Goal 2
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Limitation of traditional metrics

 Inconsistency property of F-score
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Metric value is inconsistent with Model performance!



Limitation of traditional metrics

 Inconsistency property of close-set Acc and AUROC
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Local metrics are inconsistent with global performance, 1 + 1 ≠ 2 !
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The definition of OpenAUC

 Aggregating close-set and open-set performances 

under different thresholds
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The integral formulation is hard to calculate 

 Open-set score less than 𝒕

OFPR：
Pr(Open-set sample is wrong)

✓ Open-set score less than 𝒕

✓ Correct prediction on close-set

Conditional OTPR：
Pr(Close-set sample is right)



The definition of OpenAUC

 A concise pairwise formulation
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OpenAUC considers the samples located in the area of interest ! 
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The advantage of OpenAUC

 Further theoretical results
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OpenAUC overcomes the limitations of traditional metrics

OpenAUC is consistent when the inconstant property of F-score happens

Optimizing OpenAUC increases the lower bound of open-set performance

OpenAUC is consistent when the inconstant property of AUROC happens



OpenAUC optimization

 Empirical minimization objective
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✓ Correctly classify 

close-set samples
Goal 1

✓ Discriminate open-set samples 

from close-set ones
Goal 2

• Common MLC loss 

function such as CE

• Optimize the AUC loss only if 

close-set sample has been 

correctly classified

Optimizing OpenAUC is consistent with the decision process



Empirical results

 Inconsistency property of classification-based metrics
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Empirical results

Optimizing OpenAUC help boost model performances
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Thanks for your listening!


