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Motivation: Model Compression and Its Difficulties

Deep Neural Network (DNN)
powerful framework
massive storage and computing consumption
over-parameterized

Model Compression
compress DNN, maintain performance
pruning, quantization, knowledge distillation . . .

Difficulties
limited theoretical understanding of DNN
unclear the trade-off between performance and complexity

Understanding DNN model first!
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Neural Tangent Kernel

Neural Tangent Kernel (NTK) [JGH18]
the NTK matrix KNTK = J⊤J = (∇θfθ(X))⊤ (∇θfθ(X))

only depends on input data, network structure, and (law of)
random initialization
characterizes convergence and generalization properties of
network (via its eigenspectrum)
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How Can NTK Help Compression?

For high-dimensional Gaussian mixture data (number n and
dimension p) and fully-connected multi-layer neural nets

Asymptotic spectral equivalence between KNTK and K̃NTK

For the NTK matrix KNTK,ℓ of layer ℓ, as n, p → ∞, one has that∥∥∥KNTK,ℓ − K̃NTK,ℓ

∥∥∥ → 0,

K̃NTK,ℓ with explicit expression.

Proof via an induction on the layer ℓ = 0, 1, . . . , L.
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How Can NTK Help Compression?

Explicit expression of K̃NTK,ℓ

K̃NTK,ℓ ≡ βℓ,1X
⊤X+VBℓV

⊤ +
(
κ2
ℓ − τ2

0βℓ,1 − τ4
0βℓ,3

)
In

with V ∈ Rn×(K+1), t ∈ RK ,T ∈ RK×K , τ0 some statistics for input data, and

Bℓ ≡
[

βℓ,2tt
⊤ + βℓ,3T βℓ,2t

βℓ,2t
⊤ βℓ,2

]
∈ R(K+1)×(K+1),

depends on activations with only four parameters βℓ,1, βℓ,2,
βℓ,3, κℓ
independent of the distribution of weights (satisfying zero mean
and unit variance)
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How to Compress Weights and Activation Functions?

Sparsity and Ternary Weights W with sparsity rate ε ∈ [0, 1)

[W ]ij =


0 p = ε

(1− ε)−1/2 p = 1/2− ε/2

−(1− ε)−1/2 p = 1/2− ε/2

Quantized Activations

r1 r2 s1 0 s2r3 r4

a

0
b2
b1

σQ
σT σT (t) = a · (1t<s1 + 1t>s2) ,

σQ(t) = b1 · (1t<r1 + 1t>r4)

+ b2 · 1r2≤t≤r3 .

Figure: Visual representations of activations σT and σQ.
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Numerical Experiments
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Figure: Classification accuracies of different compressed fully-connected nets on MNIST (top) and
CIFAR10 (bottom) datasets. Blue curves represent the proposed compression approach with different
levels of sparsity ε ∈ {0%, 50%, 90%}, purple curves represent the heuristic sparsification approach by
uniformly zeroing out 80% of the weights, green curves represent the heuristic quantization approach
using the binary activation σ(t) = 1t<−1 + 1t>1 , red curves represent the original network, brown
curves represent the proposed compression approach without activation quantization, with ε = 90% for
MNIST (top) and ε = 95% for CIFAR10 (bottom), and orange curves represent magnitude-based pruning
with the same sparsity level ε as brown. Memory varies due to the change of layer width of the network.
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Conclusion
Theoretical Result: precise characterizations of the
eigenspectra of NTK matrix
Compression Algorithm: sparsify and quantize fully-connected
deep nets

Outlook
apply asymptotic characterizations for NTK for some analysis
for dynamics of fully-connected DNN models
extend to more involved settings, like convolutional nets
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Thank You!
And welcome to come to talk with us at (virtual)

poster session for more details!
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