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Formulation:

denotes the support of environments,        is the prediction model and                                  
represents a loss function.

The risk function under a given environment e:

Background - OoD
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q Out-of-Distribution Generalization: Assume that there is a potential 
environment variable accounting for the distribution shift between 
the training and testing data. In general cases the goal is to predict 
the target label     given the associated input    .

Re(x
e,ye) = E(x,y)∼p(x,y|e=e)[l(f(x), y)|e]



Background - Invariant Learning
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q Invariant Learning is an emerging line for solving the OOD generalization problem.

q These methods propose to find an invariant predictor that could uncover invariant                         
relationships between inputs and targets across all environments. 

q The invariant predictor aims to learn an invariant representation satisfying such a
invariance principle.

Invariance Principle:
1) sufficiency: shows sufficient predictive power for the target
2) invariance: contributes to equal performance for the downstream 
tasks across all environments



A molecular graph can be represented as                       , where      is the  graph's 
node set corresponding to atoms constituting the molecule and      denotes the 
graph's edge sets corresponding to chemical bonds.

Background - MRL
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q Molecular Representation Learning (MRL) aims at embedding a molecule 
into a vector in latent space as a foundation model, on top of which the 
learned representations could be used for a variety of downstream tasks.

o SMILES-based methods

o Structure-based methods



OoD Molecular Represention Learning
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q OOD General Formulation:

q OoD on MRL:
min
f

max
e∈E

E(Gi,yi)∼p(G,y|e=e)[l(f(Gi), yi)|e]

min
f

max
e∈E

E(x,y)∼p(x,y|e=e)[l(f(x), y)|e]



Motivating Examples
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Formic Acid Citric	Acid

Key Observation: the (bio)chemical properties of a molecule are usually 
associated with a few privileged molecular substructures

the shared hydroxy (-OH)/ carboxy (-COOH)             good water solubility



Environment Inference
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q Reasons for necessity
• Manual specifications of the environments may be unavailable

o Labeling is time-consuming
• Directly utilizing existing environment labels may be problematic

o There is few molecules per environment on average.

q A Variational Inference-based method
• Introduce a variational distribution to approximate
• The learning objective: 

qκ(e|G,y) pτ (e|G,y)

Lelbo(τ,κ;G) =
1

|G|
∑

(G,y)∈G

[Eqκ [log pτ (y|G, e)]−DKL(qκ(e|G, y) ‖ p(e|G))]



Invariant Predictor
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q Goal: 
minimize the expectation of risks from different environments known in the training data:

from the perspective of information theory
min
ω,Φ

Ee[Re(G
e,ye)], s.t. y ⫫ e | Φ(G)

max
ω,Φ

I(z;y), s.t. min
ω,Φ

I(y; e|z)

max
qθ(y|z),qθ(z|G)

I(z;y), s.t. min
qθ(y|z),qθ(z|G)

I(y; e|z)

Treating the outputs of     and     as 
distribution              and 

ω Φ
qθ(z|G) qθ(y|z)

ω
: the molecule encoder
: the final predictor
: the denotation of 

Φ

z Φ(G)

The equivalent tractable objective in practical instantiation:
Linv(θ;G, τ) =

1

|G|
∑

(G,y)∈G

∣∣log qθ(y|G)− Ep(e|G)[log pτ (y|G, e)]
∣∣+ βEe



 1

|Ge|
∑

(G,y)∈Ge

[− log qθ(y|G)]




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Theoretical Justification 

q Theorem 1. With                treated as a variational distribution, minimizing term   
① contributes to                                      , letting  show equal performance for the 
downstream tasks across all environments, i.e.                                 .

q Theorem 2. Regarding               as a variational distribution,  minimizing term ②
equals to                  , letting     show sufficient predictive power for 
downstream tasks.

Linv(θ;G, τ) =
1

|G|
∑

(G,y)∈G

∣∣log qθ(y|G)− Ep(e|G)[log pτ (y|G, e)]
∣∣

︸ ︷︷ ︸
1

+βEe



 1

|Ge|
∑

(G,y)∈Ge

[− log qθ(y|G)]





︸ ︷︷ ︸
2



Overview of MoleOOD
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q two-stage training strategy to search for optimal parameters
• 1) optimizing the environment-inference model:
• 2) optimizing the molecule encoder and the predictor:

κ∗, τ∗ ← argmax
κ,τ

Lelbo(τ,κ;Gtrain)

θ∗ ← argmin
θ

Linv(θ;Gtrain, τ)



Experiments on OGB benchmark
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Table. ROC-AUC results on four datasets from OGB benchmark

q MoleOOD achieves consistent significant improvements across four read-world 
datasets with different backbones (GCN, GIN and GraphSAGE )
• our method can achieve up to 5.9% improvement

Nianzu Yang

Methods BACE BBBP SIDER HIV
GCN 80.01 ± 3.49 67.92 ± 1.07 58.90 ± 1.30 76.35 ± 2.01
GCN + virtual node 77.51 ± 3.07 68.19 ± 1.86 60.71 ± 1.34 75.76 ± 2.21
GCN + ours. 84.33 ± 1.07 70.62 ± 0.99 63.38 ± 0.67 77.73 ± 0.76
GIN 77.83 ± 3.15 66.93 ± 2.31 59.05 ± 1.47 76.58 ± 1.02
GIN + virtual node 79.64 ± 2.02 66.77 ± 0.95 59.12 ± 0.95 77.11 ± 0.96
GIN + ours. 81.09 ± 2.03 69.84 ± 1.84 61.63 ± 1.08 78.31 ± 0.24
GraphSAGE 77.41 ± 1.19 70.58 ± 0.58 58.00 ± 0.95 76.98 ± 1.13
GraphSAGE + virtual node 78.34 ± 2.08 69.29 ± 0.99 59.48 ± 1.37 77.28 ± 1.53
GraphSAGE + ours. 82.95 ± 0.85 71.02 ± 0.75 61.09 ± 0.28 79.39 ± 0.51



Experiments on DrugOOD benchmark
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Table. ROC-AUC results for six datasets from DrugOOD benchmark
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Dataset IC50 EC50
Environment Assay Scaffold Size Assay Scaffold Size
ERM 70.93 ± 2.10 67.31 ± 1.72 67.40 ± 0.56 69.35 ± 7.38 63.92 ± 2.09 60.94 ± 1.95
IRM 70.85 ± 2.41 66.06 ± 1.23 58.46 ± 2.11 69.94 ± 1.03 63.74 ± 2.15 58.30 ± 1.51
DeepCoral 69.82 ± 4.23 66.36 ± 2.57 59.21 ± 2.09 69.42 ± 3.35 63.66 ± 1.87 56.13 ± 1.77
DANN 70.00 ± 1.03 63.61 ± 2.32 65.77 ± 0.47 66.97 ± 7.19 64.33 ± 1.82 61.11 ± 0.64
MixUp 70.22 ± 3.66 66.43 ± 1.08 67.77 ± 0.23 70.62 ± 2.12 64.53 ± 1.66 62.67 ± 1.41
GroupDro 69.98 ± 1.74 64.09 ± 2.05 58.46 ± 2.69 70.52 ± 3.38 64.13 ± 1.81 59.06 ± 1.50
Ours. 71.38 ± 0.68 68.02 ± 0.55 66.51 ± 0.55 73.25 ± 1.24 66.69 ± 0.34 65.09 ± 0.90

qDrugOOD provides more diverse splitting indicators than OGB, including assay, scaffold and size
qExcept on IC50-size, our method outperforms all baselines across all datasets

• our method can achieve up to 3.9% improvement



Ablation Study
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Table. Ablation study on EC50-Assay/Scaffold/Size datasets
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We analyze the contributions of different model components to the final performance.

Method Assay Scaffold Size
ERM (GIN + ERM loss) 69.35 ± 7.38 63.92 ± 2.09 60.94 ± 1.95
MixUp 70.62 ± 2.12 64.53 ± 1.66 62.67 ± 1.41
DANN 66.97 ± 7.19 64.33 ± 1.82 61.11 ± 0.64
Our architecture + ERM loss 71.44 ± 2.02 65.99 ± 0.42 64.23± 0.71
GIN + new learning objective 72.07 ± 1.14 66.33 ± 1.38 64.43± 1.10

DANN using our inferred environment label 68.83 ± 2.44 64.95 ± 1.07 62.56 ± 1.54
Our model using given environment label 71.94 ± 2.77 66.29 ± 0.85 63.38 ± 1.20
Our full model 73.25 ± 1.24 66.69 ± 0.34 65.09 ± 0.90



Conclusion
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q Proposes to leverage the invariance principle which opens a new 
perspective for handling substructure-aware distribution shifts.

q Practical applicability for molecular OOD learning where the 
manual specifications of the environments are often unavailable.

q Extensive experiments on ten public datasets demonstrate our 
model yields consistent and significant improvements. 
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