Change Event Dataset for Discovery from Spatio-temporal Remote Sensing Imagery

Utkarsh Mall

Bharath Hariharan Cornell University

Kavita Bala

Plethora of Satellite Images

Number of Earth Observation Satellites are rising rapidly.

New Cities Drying Lakes **5 Terapixel** information every week!

Need better tools to **discover** and **quantify** interesting events!

Supervision: Costly, Specialized, and Cannot Discover Unknown

Our Model

Can we automatically discover and group change events?

Cost-effective, general, and discovers new previously unrecognized events.

Our Contribution

Present an **unsupervised** method to discover **change events** from spatio-temporal satellite imagery.

Propose 2 new benchmarks created using our pipeline.

CaiRoad Benchmark

CalFire Benchmark

Defining Change Events

<u>Definition:</u> a group of pixels over space and time that were changed by a single event.

Road Construction

Water Level

 $\langle V_{1...l}, C_{1...l-1} \rangle$ Formally:

$$V \in R^{l \times x \times y \times c}$$

$$C \in \{0, 1\}^{l - 1 \times x \times y}$$

Change detection

First Step: Detect all changes between consecutive images.

Existing methods are either too slow or less accurate. We instead use a self-supervised method!

Self-supervised Learning for Change Detection

Self supervised learning can learn invariance and equivariance

Invariance to Photometric Transforms

Equivariance to Geometric Transforms

Equivariance to Geometry

This loss enforces equivariance to geometric transforms

Detection and Grouping

Benchmarks

CaiRoad Benchmark

28015 Total Events

2256 Road Construction Events

Several Other Useful Events!

CalFire Benchmark

2172 Total Events 204 Forest Fire Events

Results

Change Detection and Grouping

Method	F1-Score	Run Time (s)
CVA	0.268	1.16
PCANet	0.298	13.70
Tile2Vec	0.149	316.18
DCVA	0.255	0.94
KPCAMNet	0.302	54.46
Ours	0.321	0.94

Unsupervised Change Detection on OSCD Benchmark

KPCAMNet Ours

Change Grouping

Retrieving Positive Events

Our dataset is challenging for existing techniques.

Conclusion

Presented an **unsupervised** method to discover **change events** from spatio-temporal satellite

Grouping changes

Feature Learning for Change Detection/Grouping

Proposed 2 new benchmarks created using our pipeline.

More work in the future is required to better encode and group these change events.

Thank You!

https://www.cs.cornell.edu/projects/satellite-change-events/

