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Block architectures
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Conv: VGG-style 3x3 convolutions.
BConv: Resnet-style bottleneck with 5x5 depthwise separable convolutions.
MBConv: EfficientnetV2 fused-inverted residual convolution including squeeze and excitation operation.

45 unique blocks - 91,125 models.



Macro vs cell-based models
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Blockwise NAS

Block signatures
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Does distillation give better performance vs normal training?

Fine-tuning does not always results in improvement of
student models
e.g., M1 student drop from 75.39 to 74.37 when using
M5 as teacher.

Test accuracy after distilling for 200 §pochs

S - 76.64 76.45 76.10 75.99 76.99

g 76.39 76.15 76.59 76.05

Teacher architecture

74.92 74.54

Student models improve upon their teachers it i

e.g., M5 teacher 72.11, students > 73.92

M5 M4 M3 M2 M1
(72.11)  (72.25)  (74.52)  (75.37)  (75.39)

Student architecture



Does fine-tuning accuracy correlate to training-from-scratch accuracy?
Improvement upon their own training-from-scratch accuracy
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Can we use signatures to predict end-to-end performance?
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Number of models used to train the predictor

* DONNA: a linear regression model with second-order terms.
* HANT: a simple sum of signatures is used as a proxy.
* GCN: a graph convolutional network to capture graph topology and predict performance

of a model.
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Can we search for good models without prior knowledge of a good teacher?

The iterative approach has significantly improved the model accuracy without knowing a good

teacher in advance.
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Comparison of different NAS methods

Acc. Cost
MEthd @ cost=40 @ acc.=76.6
Conventional NAS
Regularized Evolution ~ 76.10 X
BRP-NAS 76.40 400
DARTS-PT 74.52% X
Blockwise NAS assuming good teacher (M1)
FT200 76.90 25 < Standard blockwise with good teacher
FT10 73.47 X
FT10 + FT200 77.66 30 <« Reduced fine-tuning followed by full
Blockwise NAS assuming bad teacher (M5) fine-tuning with good teacher
FT10 70.67 X
FT10 + FT200 74.90 X
FT10 + FT200 iter. 76.67 30 <« lterative fine-tuning approach
FT10 + FT200 m1 76.88 30




More about our work

e https://github.com/SamsunglLabs/blox
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