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Introduction

▪ Unsupervised Domain Adaptation (UDA) demonstrates great potential to mitigate domain shifts by 
transferring models from labeled source domains to unlabeled target domains

▪ Only a few UDA works focus on lane detection for autonomous driving

▪ This can be attributed to the lack of publicly available datasets
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Contributions

To the best of our knowledge, we are the first to adapt a lane detection model from simulation to multiple real-world domains

3

3-Way Sim-to-Real 
Benchmark

allowing single- and
multi-target UDA

Several Dataset
Tools

data collection agent
labeling tool

Establishing
Baselines

evaluating well-known and
own UDA methods

06/22/2022



The CARLANE Benchmark

▪ The CARLANE Benchmark consists of three distinct sim-to-real datasets, which we build from our three different 
domains:
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Images sampled from our CARLANE Benchmark.

MoLane
focuses on abstract lane markings in the 
domain of a 1/8th Model vehicle.

TuLane
incorporates balanced and domain-randomized 
images from simulation as the source domain 
and the well-known TuSimple dataset.

MuLane
is a balanced combination of MoLane and 
TuLane with two target domains.
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Dataset Collection - Simulation

▪ We use the open-source CARLA simulator

▪ Randomize multiple aspects of the agent and environment:

▪ weather and daytime by adapting parameters such as cloud density, rain intensity, …

▪ up to five neighbor vehicles are spawned randomly in the vicinity of the agent

▪ ego vehicle position is varied by the data agent using a triangle wave function
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At this point, none of the 
other datasets is publicly 
available
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Dataset Collection - Model Vehicle
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▪ We capture data with our 1/8th model vehicle

▪ Tracks roughly contain the same proportion of straight and curved segments 

▪ Randomizations: 

▪ alternating backgrounds, lighting conditions, surface materials, and lane topology

▪ four different locations 
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Dataset Collection - TuSimple

▪ We create a cleaned version of TuSimple[1] for the real-world target domain of TuLane

▪ ensure that up to four lanes closest to the car are correctly labeled

▪ To clean the data, we utilize our publicly available labeling tool
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Dataset Statistics
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Lane annotation distributions of the three subsets of CARLANE.

Dataset overview. Unlabeled images denoted by *, partially labeled 

images denoted by **

▪ CARLANE contains a total of 163K unique images

▪ 118K images are annotated
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Benchmark Experiments

▪ We use UFLD[2] as lane detection backbone

▪ The following UDA methods are evaluated: 
DANN[3], ADDA[6], SGADA[7], and SGPCS (ours)

▪ To work with UFLD the UDA methods had to be 
adopted for grid-based lane detection

▪ Results are given as an average over five runs 

▪ Baselines, implementations, and weights are 
publicly available
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UFLD‘s grid-based lane detection.
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SGPCS (ours)

▪ We build upon PCS [8] and perform in-domain contrastive learning and cross-domain self-supervised 
learning via cluster prototypes

▪ Memory bank features are updated with a momentum of 0.5 

▪ Spherical K-means [9] (K=2500) is used to cluster memory bank features into prototypes

▪ Our objective function comprises the in-domain and cross-domain losses from PCS, all losses from UFLD, 
and our pseudo loss for grid-based lane detection
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Benchmark Experiments

▪ Adaptation methods are not able to achieve comparable results to the supervised baselines (UFLD-TO):

▪ Maximum accuracy gain of 4.55%

▪ High false positive (FP) and false negative (FN) rates

▪ FP and FN rates increase significantly on the multi-target task of MuLane
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FP and FN represent wrongly detected and missing lanes, which can lead to crucial impacts on autonomous driving functions
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Benchmark Experiments

▪ In accordance with the quantitative results, we observe only a slight adaptation of the source and target 
domain features for ADDA, SGADA, and SGPCS compared to the supervised baseline UFLD-SO
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t-SNE visualization of MuLane dataset. The source domain is marked in blue, the real-world model vehicle target domain 

in red, and the TuSimple domain in green.
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Benchmark Experiments
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Qualitative results of target domain predictions. Ground

truth lane annotations are marked in blue, predictions in red.
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Qualitative results of target domain predictions. Ground

truth lane annotations are marked in blue, predictions in red.

Benchmark Experiments
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Conclusion

We proposed CARLANE, the first 3-way sim-to-real domain adaptation 
benchmark for 2D lane detection.

The current difficulties of the examined UDA methods to adequately align the 
source and target domains confirm the need for the proposed CARLANE 
benchmark. 

UDA methods should be tested with care and under the right conditions on a full-
scale car. However, real-world testing in the model vehicle domain can be carried 
out in a safe and controlled environment. 
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https://carlanebenchmark.github.io/
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