https://github.com/Extrality/AirfRANS

AIRFRANS: High Fidelity Computational Fluid Dynamics Dataset for Approximating Reynolds-Averaged Navier–Stokes Solutions

Florent Bonnet¹² Jocelyn Ahmed Mazari² Paola Cinnella³ Patrick Gallinari¹⁴

¹Sorbonne Université, CNRS, ISIR, Paris, France
 ²Extrality, Paris, France
 ³Sorbonne Université, Institut Jean Le Rond d'Alembert, Paris, France
 ⁴Criteo Al Lab, Paris, France

Surrogate models

 Main problem. Computational cost of solvers.

Figure 1: Velocity streamlines and pressure profile on a car body.

Surrogate models

 Main problem. Computational cost of solvers.

Candidate solution.
 Data-driven
 approximation models.

Figure 1: Velocity streamlines and pressure profile on a car body.

Surrogate models

 Main problem. Computational cost of solvers.

Candidate solution.
 Data-driven
 approximation models.

 Goal. Make possible automated design procedure.

Figure 1: Velocity streamlines and pressure profile on a car body.

Our contribution

 Dataset. A high fidelity dataset is proposed for approximating Reynolds-Averaged Navier–Stokes (RANS) solutions over airfoils in a subsonic regime.

Our contribution

- Dataset. A high fidelity dataset is proposed for approximating Reynolds-Averaged Navier–Stokes (RANS) solutions over airfoils in a subsonic regime.
- Metrics and visualizations. Metrics and visualizations are proposed to focus on relevant part of dynamics and important derived quantities.

Our contribution

- Dataset. A high fidelity dataset is proposed for approximating Reynolds-Averaged Navier–Stokes (RANS) solutions over airfoils in a subsonic regime.
- Metrics and visualizations. Metrics and visualizations are proposed to focus on relevant part of dynamics and important derived quantities.
- Baselines. Standard baselines are proposed based on neural networks from the Geometric Deep Learning framework.

Subsonic two-dimensional aerodynamics

Task definition. Find the airfoil that maximizes the lift-over-drag ratio, and predict the velocity and pressure fields around it.

Equations to solve. Incompressible two-dimensional steady-state RANS equations

$$egin{cases} (ar{u}\cdot
abla)ar{u}=-rac{1}{
ho}
ablaar{p}+(
u+
u_t)\Deltaar{u}\
abla
abla\cdotar{u}=0 \end{cases}$$

along with the $k - \omega$ SST model for turbulence modeling.

Simulation generation process

Simulation generation process

 NACA 4 and 5 digits series.

 Parameters chosen for subsonic flights setup.

Validation of the simulations

Simulations validated with NASA's experimental results.

Figure 2: Coefficient of pressure at the surface for a NACA 0012.

Figure 3: Coefficient of pressure at the surface for a NACA 4412.

Force coefficients validation

Figure 4: Force coefficients for a NACA 0012.

Proposed scenarios (ML task)

🥭 EXTRALIT

- Full data regime. 800 simulations in the training set and 200 simulations in the test set.
- Scarce data regime. Same test set but only 200 simulations in the training set.
- Reynolds extrapolation regime. Out-of-distribution Reynolds number for simulations in the test set.
- Angles of attack extrapolation regime. Out-of-distribution angles of attack (AoA, airflow direction) for simulations in the test set.

Benchmarking setup

Candidate models. MLP, GraphSAGE, PointNet, and Graph U-Net (GUNet).

Benchmarking setup

Candidate models. MLP, GraphSAGE, PointNet, and Graph U-Net (GUNet).

Regressed fields. Unknowns of the RANS equations.

Metrics hierarchy

🥭 EXTRALITY

Model		Surface			
	$\bar{u}_x (\times 10^{-2})$	$\bar{u}_y (\times 10^{-2})$	$\bar{p}(\times 10^{-2})$	$\nu_t (\times 10^{-2})$	$\bar{p}(\times 10^{-1})$
MLP	1.65 ± 0.03	1.45 ± 0.07	3.90±0.57	5.01 ± 0.76	2.19 ± 0.53
GraphSAGE	1.46 ± 0.13	1.45 ± 0.12	4.70 ± 0.80	6.11 ± 0.79	1.95 ± 0.34
PointNet	3.11 ± 0.30	2.78 ± 0.39	3.29 ± 1.05	5.58 ± 2.36	1.83 ± 0.41
Graph U-Net	1.75 ± 0.19	$1.83 {\pm} 0.18$	$3.39{\pm}0.84$	$4.30{\pm}1.00$	$1.47{\pm}0.35$

Figure 5: Comparison of the mean squared error on the normalized fields in the scarce data regime.

Model	Relative error		Spearman's correlation		
	C_D	C_L	ρ_D	ρ_L	
MLP	$2.95{\pm}0.14$	$0.66{\pm}0.16$	-0.24 ± 0.08	0.923 ± 0.026	
GraphSAGE	3.50 ± 1.00	0.39 ± 0.10	-0.14 ± 0.18	0.981 ± 0.006	
PointNet	8.35±1.39	0.59 ± 0.13	-0.05 ± 0.27	0.949 ± 0.019	
Graph U-Net	$6.87 {\pm} 1.80$	$0.42{\pm}0.13$	-0.10 ± 0.23	0.976 ± 0.009	

Figure 6: Comparison of the Spearman's rank correlation and mean relative error for the predicted drag and lift coefficients in the scarce data regime.

Spearman's correlation. Preservation of the rank of the force coefficients is primary.

Force coefficients visualization

Figure 7: Predicted drag (left) and lift (right) coefficients with respect to the true ones.

Surface profiles visualization

Figure 8: Comparison of the predicted pressure coefficient c_p and the skin friction coefficient c_{τ} profiles on a random geometry with respect to the true ones.

Boundary layers visualization

Figure 9: Comparison of the predicted boundary layers profiles on three random test geometries at abscissas x = 0.2.

- ▶ Relative errors lower than 5% for both force coefficients.
- Accurate fitting of the boundary layers and the far fields.

Resources

For reproducing the results. https://github.com/Extrality/AirfRANS

For running new simulations. https://github.com/Extrality/NACA_simulation

