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Surrogate models

> Main problem.
Computational cost of
solvers.
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Figure 1: Velocity streamlines
and pressure profile on a car
body.
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Surrogate models

> Main problem.
Computational cost of
solvers.

> Candidate solution.
Data-driven
approximation models.

» Goal. Make possible
automated design
procedure.
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» Dataset. A high fidelity dataset is proposed for
approximating Reynolds-Averaged Navier-Stokes (RANS)
solutions over airfoils in a subsonic regime.
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» Dataset. A high fidelity dataset is proposed for
approximating Reynolds-Averaged Navier-Stokes (RANS)
solutions over airfoils in a subsonic regime.

> Metrics and visualizations. Metrics and visualizations are
proposed to focus on relevant part of dynamics and important
derived quantities.
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» Dataset. A high fidelity dataset is proposed for
approximating Reynolds-Averaged Navier-Stokes (RANS)
solutions over airfoils in a subsonic regime.

> Metrics and visualizations. Metrics and visualizations are
proposed to focus on relevant part of dynamics and important
derived quantities.

» Baselines. Standard baselines are proposed based on neural
networks from the Geometric Deep Learning framework.
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Subsonic two-dimensional aerodynamics

Task definition. Find the airfoil that maximizes the lift-over-drag
ratio, and predict the velocity and pressure fields around it.

Equations to solve. Incompressible two-dimensional steady-state
RANS equations

(@- V)i =—3VPp+ (v +w)Al
V.-u=0

along with the kK —w SST model for turbulence modeling.
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> NACA 4 and 5 digits
series.
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Simulation generation process

> NACA 4 and 5 digits
series.

» Parameters chosen for
subsonic flights setup.
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Validation of the simulations

» Simulations validated
with NASA's
experimental results.

Figure 2: Coefficient of pressure
at the surface for a NACA 0012.
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Figure 3: Coefficient of pressure
at the surface for a NACA 4412.
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Figure 4: Force coefficients for a NACA 0012.
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» Full data regime. 800 simulations in the training set and 200
simulations in the test set.

> Scarce data regime. Same test set but only 200 simulations
in the training set.

> Reynolds extrapolation regime. Out-of-distribution
Reynolds number for simulations in the test set.

> Angles of attack extrapolation regime. Out-of-distribution
angles of attack (AoA, airflow direction) for simulations in the
test set.
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» Candidate models. MLP, GraphSAGE, PointNet, and Graph
U-Net (GUNet).
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» Candidate models. MLP, GraphSAGE, PointNet, and Graph
U-Net (GUNet).

> Regressed fields. Unknowns of the RANS equations.
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Metrics hierarchy

Model Relative error Spearman’s correlation
‘D 3 D PL
Model Volume Surface MLP 2.95+0.14  0.66+0.16 -0.24+0.08  0.923+0.026
et sl s s (B T Somm M sl sma
ointNe! 3 .59 .13 -0.05 .2 2 £0.¢
CHWSAGE  Tariols Aol ayeom eiitor Terrasa Graph U-Net  6.871.80 0.42£0.13  -0.10£0.23  0.976:0.009
PointNet 3114030 278+0.39 3294105 5. 1.83£0.41
Graph U-Net 1.7540.19 1.83+0.18 3394084 4. 00 147+035
Figure 6: Comparison of the
Figure 5: Comparison of the Spearman’s rank correlation and
mean squared error on the mean relative error for the
normalized fields in the scarce predicted drag and lift
data regime. coefficients in the scarce data

regime.

» Spearman’s correlation. Preservation of the rank of the
force coefficients is primary.
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Figure 7: Predicted drag (left) and lift (right) coefficients with respect to
the true ones.
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Surface profiles visualization
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Figure 8: Comparison of the predicted pressure coefficient ¢, and the skin
friction coefficient ¢, profiles on a random geometry with respect to the

true ones.
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Figure 9: Comparison of the predicted boundary layers profiles on three
random test geometries at abscissas x = 0.2.
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» Spearman'’s rank correlation close to 1 for both force
coefficients.

P Relative errors lower than 5% for both force coefficients.

» Accurate fitting of the boundary layers and the far fields.
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» For reproducing the results.
https://github.com/Extrality /AirfRANS

» For running new simulations.
https://github.com/Extrality/NACA_simulation
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