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Surrogate models

▶ Main problem.
Computational cost of
solvers.

▶ Candidate solution.
Data-driven
approximation models.

▶ Goal. Make possible
automated design
procedure.

Figure 1: Velocity streamlines
and pressure profile on a car
body.
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Our contribution

▶ Dataset. A high fidelity dataset is proposed for
approximating Reynolds-Averaged Navier–Stokes (RANS)
solutions over airfoils in a subsonic regime.

▶ Metrics and visualizations. Metrics and visualizations are
proposed to focus on relevant part of dynamics and important
derived quantities.

▶ Baselines. Standard baselines are proposed based on neural
networks from the Geometric Deep Learning framework.
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Subsonic two-dimensional aerodynamics

Task definition. Find the airfoil that maximizes the lift-over-drag
ratio, and predict the velocity and pressure fields around it.

Equations to solve. Incompressible two-dimensional steady-state
RANS equations{

(ū · ∇)ū = −1
ρ∇p̄ + (ν + νt)∆ū

∇ · ū = 0

along with the k − ω SST model for turbulence modeling.



Simulation generation process

▶ NACA 4 and 5 digits
series.

▶ Parameters chosen for
subsonic flights setup.
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Validation of the simulations

▶ Simulations validated
with NASA’s
experimental results.

Figure 2: Coefficient of pressure
at the surface for a NACA 0012.

Figure 3: Coefficient of pressure
at the surface for a NACA 4412.



Force coefficients validation

Figure 4: Force coefficients for a NACA 0012.



Proposed scenarios (ML task)

▶ Full data regime. 800 simulations in the training set and 200
simulations in the test set.

▶ Scarce data regime. Same test set but only 200 simulations
in the training set.

▶ Reynolds extrapolation regime. Out-of-distribution
Reynolds number for simulations in the test set.

▶ Angles of attack extrapolation regime. Out-of-distribution
angles of attack (AoA, airflow direction) for simulations in the
test set.



Benchmarking setup

▶ Candidate models. MLP, GraphSAGE, PointNet, and Graph
U-Net (GUNet).

▶ Regressed fields. Unknowns of the RANS equations.
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Metrics hierarchy
Figure 13: Comparison of the predicted surface coefficients profiles on three random test geometries
in the full data regime with respect to the true one. (left) Surface coefficient cp (right) Skin friction
coefficient cτ . Each line of plots represents a different airfoil. Skin friction coefficient plots are given
in log scale.

Table 10: Mean squared error on the different normalized fields for an MLP and standard GDL
baselines on the test set in the scarce data regime. Only the reduced pressure is given on the surface
as the other quantities are null via the boundary conditions. Those quantities are directly regressed by
the models.

Model Volume Surface
ūx (×10−2) ūy (×10−2) p̄ (×10−2) νt (×10−2) p̄ (×10−1)

MLP 1.65±0.03 1.45±0.07 3.90±0.57 5.01±0.76 2.19±0.53
GraphSAGE 1.46±0.13 1.45±0.12 4.70±0.80 6.11±0.79 1.95±0.34

PointNet 3.11±0.30 2.78±0.39 3.29±1.05 5.58±2.36 1.83±0.41
Graph U-Net 1.75±0.19 1.83±0.18 3.39±0.84 4.30±1.00 1.47±0.35
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Figure 5: Comparison of the
mean squared error on the
normalized fields in the scarce
data regime.

Table 11: Relative errors (Spearman’s rank correlation) for the predicted drag coefficient CD (ρD)
and lift coefficient CL (ρL) in the scarce data regime. We want the Spearman’s correlation to be close
to one. Those quantities are computed as a post processing from the unnormalized regressed fields.

Model Relative error Spearman’s correlation
CD CL ρD ρL

MLP 2.95±0.14 0.66±0.16 -0.24±0.08 0.923±0.026
GraphSAGE 3.50±1.00 0.39±0.10 -0.14±0.18 0.981±0.006

PointNet 8.35±1.39 0.59±0.13 -0.05±0.27 0.949±0.019
Graph U-Net 6.87±1.80 0.42±0.13 -0.10±0.23 0.976±0.009

Figure 14: Predicted drag (left) and lift (right) coefficients with respect to the true ones in the scarce
data regime. The mean (top) and standard deviation (bottom) of each point on the five copy of the
trained models are separated for sake of readability. A linear regression is done for each point cloud in
order to highlight linear trends. On the top plots, the Identity graph is given in black for comparison.

Reynolds extrapolation regime. In this regime, we test on out of distribution Reynolds number.

In Table 12, we give the MSE over the volume and at the surface of airfoils for the different regressed
fields. In Table 13 we give the mean relative errors on the force coefficient and the Spearman’s rank
correlation coefficient. In Figure 17 we plot the predicted force coefficients with respect to the true
coefficients. In Figure 18, we plot the velocity and turbulent viscosity profiles in the boundary layer
for randomly chosen test geometries and in Figure 19 the surface coefficients for the same geometries.

Table 12: Mean squared error on the different normalized fields for an MLP and standard GDL
baselines on the test set in the Reynolds extrapolation regime. Only the reduced pressure is given on
the surface as the other quantities are null via the boundary conditions. Those quantities are directly
regressed by the models.

Model Volume Surface
ūx (×10−2) ūy (×10−2) p̄ (×10−2) νt (×10−1) p̄ (×10−1)

MLP 9.51±1.27 4.92±0.80 4.30±0.19 1.31±0.34 20.9±35.5
GraphSAGE 7.56±1.05 3.50±0.61 3.83±0.25 1.69±0.38 1.80±0.34

PointNet 9.42±1.08 7.13±0.80 4.01±0.74 1.27±0.44 2.01±0.76
Graph U-Net 8.38±1.82 5.25±1.36 4.48±0.40 1.28±0.31 2.06±0.44

36

Figure 6: Comparison of the
Spearman’s rank correlation and
mean relative error for the
predicted drag and lift
coefficients in the scarce data
regime.

▶ Spearman’s correlation. Preservation of the rank of the
force coefficients is primary.



Force coefficients visualization

Figure 7: Predicted drag (left) and lift (right) coefficients with respect to
the true ones.



Surface profiles visualization

Figure 8: Comparison of the predicted pressure coefficient cp and the skin
friction coefficient cτ profiles on a random geometry with respect to the
true ones.



Boundary layers visualization

Figure 9: Comparison of the predicted boundary layers profiles on three
random test geometries at abscissas x = 0.2.



Effective and accurate model

▶ Spearman’s rank correlation close to 1 for both force
coefficients.

▶ Relative errors lower than 5% for both force coefficients.

▶ Accurate fitting of the boundary layers and the far fields.



Resources

▶ For reproducing the results.
https://github.com/Extrality/AirfRANS

▶ For running new simulations.
https://github.com/Extrality/NACA_simulation

https://github.com/Extrality/AirfRANS
https://github.com/Extrality/NACA_simulation

