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Introduction

Neural Networks are successfully applied on multiple domains

Loss surface and optimization problem of Neural Networks are highly non-convex 
[Dauphin et al.,2014; Goodfellow et al., 2015; LeCun et al., 2015]

Neural Network training optimization is high dimensional
[Brown et al., 2020; Larsen et al., 2021]

Neural Network training is sensitive to hyperparameters and random initialization
[Hanin et al., 2018]

Ques%ons:

• Do individual models in popula%ons have something in common? 
• Do they form meaningful structures in weight space? 
• Can we learn representa%ons of them? 
• Can such structures be exploited to generate new models?
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Related Work
These questions have been partially addressed in previous work

Existing populations: 
- small
- unstructured
- low diversity

Discriminative: predict model properties
• Predict: accuracy, generalization gap, hyperparameters
• Features: weights [Unterthiner et al., 2020; Martin et al., 2021], 

activations [Jiang et al., 2019], graph-metrics [Corneanu et al., 2020]

Generative: generate new models
• HyperNetworks [Ha et al.. 2016;  Deutsch, 2018; Zhang et al., 2020; Knyazev 

et al., 2021; Zhmoginov et al., 2022;  Ratzlaff and Fuxin, 2019.]

• Transfer Learning, Knowledge Distillation [Shu et al., 2021; Liu et al., 
2019.]

Hyper-Representations: SSL representations of NN 
weights [Schürholt et al., NeurIPS 2021]

Generative Hyper-Representations 
[Schürholt et al., NeurIPS 2022]

This work: 
- large, structured, diverse populations
- open source: replicate, change, extend
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Model Zoo Generation

8 standard Image Classifcation Datasets: 
MNIST, F-MNIST, SVHN, USPS, STL, 
CIFAR10, CIFAR100, Tiny ImageNet

3 Architectures:
small CNN, medium CNN, ResNet-18

Varied Hyperparameters:
initalization method, activation function, optimizer, 
learning rate, weight decay, dropout, seed

3 Zoo configurations:
- Variation of random seed
- Variation of hyperparamters (with 10 random/fixed seeds)

Sparse Model Zoo Twins

Overall:
- 27 model zoos
- 50’360 unique NN models
- 3’844’360 model states
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Potential Use-Cases

Model Analysis

• Predict model properties w/o need of test data:
• Accuracy
• Generalization gap
• Transfer-learning performance

• Diagnose model bias
• Derive model identity

Learning Dynamics

• Evaluate model potential
• Early stopping
• Population Based Training
• Neural Architecture Search

• Improved understanding of learning dynamics
• Study sparsification trajectories

Representation Learning

• Analyze weight space
• Low-loss regions 
• Git Re-Basin

• Weight Manifold Learning (Hyper-Representations)
• Diffusion models on learning trajectories
• Learning to optimize

Generating New Models

• Initialization
• Transfer Learning

• Single pretrained models
• Population based

• Ideal Ensemble Composition
• Generative Hyper-Representations
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