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Labour inspections

Labour inspections are conducted in order to promote safe working
environments(SDG 8)

Research suggests that machine learning can be used to improve
labour inspections.

We introduce a new dataset called the Labour Inspection Checklists
Dataset (LICD), which could be used to build ML models
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— Target 1: A checklist which is used to survey the
inspected organisation for non-compliance.
— Target 2: A binary indicator of whether or not NTNU Open Research Data:

non-compliance was found in the inspected . ,
organisation. https://doi.org/10.18710/7U6TZP
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Analysis of the dataset

— Summary of the analysis:

— Labour inspections are industry-oriented
and most inspections are focused on
industry codes from 50 to 60.

— Non-compliance found in 74% of the
inspections.

— The use of checklists follows a long-tailed
distribution.
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Figure 2: Histograms of inspections, non-compliance and checklists with discrete
unit bins on the horizontal axes. The vertical axes on the figures represent the
number of occurrences in LICD.



Experiment 1: Selecting Checklists @

. . Method Mutual Info Anova F Time
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checklist y to survey the target
organisation x. |

— In this setting, the best checklist is the ) =] 8%
checklist that its user considers to be
most relevant for surveying x. |
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Table 1: Prediction performance with average standard deviations and run times for
CLSP on LICD. Times are measured in seconds.

Rumisst of predictions

Figure 3: Distributions on the evaluation set of a random paired 80-20 training-
evaluation split. The horizontal axes represent the identifiers for 369 possible check-
lists (classes). The vertical axes on the figures represent the number of observations
for each class in the evaluation set.
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Experiment 2: Classifying Non-compliance

Binary classification: The class
label c € {0,1} belongs to a
Bernoulli distribution.

Given a checklist y and a target

organization x:

— classify into compliant (¢ = 0)
versus non-compliant (c = 1) to
any of the regulations given by the
content of y.
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Method X Anova F Time
Bal. Ace  Acc Prec Ree Aue  |Bal. Ace  Ace Prec Rec A
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Table 2: Results with average standard deviations for NCP on LICD. The average
time in seconds per cross-validation is shown on the far right column.



Conclusion

— We introduced a new dataset called LICD.

— 63634 past inspections carried out by the Norwegian Labour Inspection
Authority.

—Consists of 575 features and 2 target variables.

— We introduced two problems which can be solved via ML.
— Strong prediction performance on the two problems can be difficult to achieve.
— Future work could:

— Investigate ML or feature selection methods, to improve classification performance.
— Explore other variants or even combinations of the two problems.
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