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Outline

1. Basics in foundation model and robustness (Pin-Yu)
2. Foundation models for computer vision (Pin-Yu, Sijia)
3. Foundation models for code (Sijia)
4. Hands-on demo & code walkthroughs (Sayak)
5. Concluding remarks and Q&A (all)

Panel Discussion: Opportunities and Challenges of Robustness in 
Foundation Models

Panelists: Payel Das (IBM), Alex Gittens (RPI), Celia Cintas (IBM),           
Bo Li (UIUC), Hildegard Kuehne (Goethe University)
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Part 1
Basics in Foundation Model and Robustness
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What is Foundation Model?

4



5



6

“We introduce the term foundation models to fill a void in describing the paradigm shift we are 
witnessing... Existing terms (e.g., pretrained model, self-supervised model) partially capture 
the technical dimension of these models, but fail to capture the significance of the paradigm 
shift in an accessible manner for those beyond machine learning.

“We also chose the term “foundation" to connote the significance of architectural stability, 
safety, and security … At present, we emphasize that we do not fully understand the nature or 
quality of the foundation that foundation models provide; we cannot characterize whether the 
foundation is trustworthy or not.”
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Our take on Foundation Model: 
A machine learning paradigm featuring task-agnostic 
pre-training and task-specific fine-tuning via neural networks

● Task-agnostic pre-training (with unlabeled/noisy data)
○ Self-supervised learning of data representations

■ Supervision-free pre-training 
● Data scalability (Texts, Images, Speech, etc)

■ Use of auxiliary tasks 
● Masked prediction (of tokens)
● Contrastive learning

○ Generic representation learning of a data modality (aka a data encoder)
● Task-specific fine-tuning (with labeled data)

○ Linear probing (training a linear head on representations)
○ Full fine-tuning (training both the linear head and the encoder)

● Examples:
○ Large language models such as GPT-3 and BLOOM
○ Transformer-based neural networks for different data modalities

8*We do not exclude the use of supervised pre-training for foundation models



Examples of Task-agnostic Pre-training

Masked prediction Contrastive learning

9
James Briggs. Masked-Language Modeling 
With BERT. TowardsDataScience, 2021 Khosla et al. Supervised Contrastive Learning. NeurIPS 2020

https://towardsdatascience.com/masked-language-modelling-with-bert-7d49793e5d2c
https://towardsdatascience.com/masked-language-modelling-with-bert-7d49793e5d2c
https://arxiv.org/abs/2004.11362


Data & Model Scalability with Self-Supervised Learning

“Our final SElf-supERvised (SEER) model, a RegNetY 
with 1.3B parameters trained on 1B random images 
with 512 GPUs achieves 84.2% top-1 accuracy, 
surpassing the best self-supervised pretrained model 
by 1% and confirming that self-supervised learning 
works in a real world setting.”
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Neural Scaling Laws
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Kaplan et al. Scaling Laws for Neural Language Models. Arxiv 2020

https://arxiv.org/abs/2001.08361


What is Foundational Robustness?
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Evaluation and enhancement of (and 
sometimes certifiable) model correctness 
against natural and adversarial data shifts



13https://huggingface.co/spaces/stabilityai/stable-diffusion

https://huggingface.co/spaces/stabilityai/stable-diffusion


Formalizing Robustness of Foundation Models (1)

14

Data

Encoder/Representation 
network from pretraining

𝜙 𝗪

Linear head for 
downstream task 𝛉={𝜙,𝗪}

Pre-training on 𝜙
Fine-tuning principles:

● Standard linear probing: 
Fix 𝜙, train 𝗪 

● Full fine-tuning: 
Train both 𝜙 and 𝗪 



Formalizing Robustness of Foundation Models (2)
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Data 𝜙 𝗪
(x,y) ∼ D

x: data sample   
y: groundtruth
D: in-domain data distribution 
(in-distribution)
𝐟𝛉(x): model prediction on x

   

𝛉={𝜙,𝗪}

(I) Adversarial robustness:

x’ similar to x. Ideally, 𝐟𝛉(x’) = 𝐟𝛉(x)

Robustness Categories
● Adversarial robustness 

(worst-case performance)
● Out-of-distribution (OOD) 

generalization (domain shifts)
● Out-of-distribution detection 

(unknowns)

𝐟𝛉(x)=bagel 𝐟𝛉(x+𝝳)=piano
𝝳: adversarial 
  perturbation

(II) OOD generalization:
x’ ~ D’, a shifted version of D 

Ideally, 𝐟𝛉(x’) = 𝐟𝛉(x)

(III) OOD detection:
x’ ~ D’, a dissimilar or new domain 
w.r.t. D 

Ideally, 𝐟𝛉(x’) = “Unknown”

𝐟𝛉(.) ∈ {cat,dog}
𝐟𝛉(    ) = “Unknown/OOD”



How to measure the quality of 
representations from foundation models?
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Benchmarking Representation Robustness and Beyond (1)
Diverse test sets using real 
downstream data (task-specific)

17

“We devise 10 types of tasks over 40 datasets in 
order to evaluate different aspects of reliability on 
both vision and language domains.”



Benchmarking Representation Robustness and Beyond (2)
Synthetic data with ideal reference (task-agnostic)

18Ching-Yun Ko, Pin-Yu Chen, Jeet Mohapatra, Payel Das, and Luca Daniel. SynBench: Task-Agnostic 
Benchmarking of Pretrained Representations using Synthetic Data. arxiv 2022

Linear heads with different robustness marginsSupervised pre-training 
on ImageNet-21K

● Soundness
● Task-independence
● Flexibility & Privacy

https://arxiv.org/abs/2210.02989
https://arxiv.org/abs/2210.02989


Other Aspects of Trustworthiness in Foundation Models 
(no covered in this tutorial)

- 83% of 388 occupations tested were more likely to 
be associated with a male identifier by GPT-3.

- “Black” had a consistently low sentiment.
19

*Many broader topics were discussed in “On the Opportunities and Risks of Foundation Models”

NeurIPS 2020

USENIX 2021

https://arxiv.org/abs/2108.07258


Part 2
Foundation Models for Computer Vision

20



Robustness Evaluation & Attribution of 
Vision Transformers

21

Sayak Paul* and Pin-Yu Chen*. Vision transformers are robust learners. AAAI 2022
Rulin Shao, Zhouxing Shi, Jinfeng Yi, Pin-Yu Chen, and Cho-Jui Hsieh. On the adversarial 

robustness of vision transformers. TMLR 2022

https://arxiv.org/abs/2105.07581
https://arxiv.org/abs/2103.15670
https://arxiv.org/abs/2103.15670


Vision Transformers

22
How about robustness?

Pure Transformer (Vaswani 
et al., NeurIPS’17) applied to 
patches of images with 
minimal changes. 

ICLR 2021



Robustness Evaluation

Out-of-distribution Generalization Robustness to Adversarial Perturbations

● Empirical robustness
○ Minimize𝝳∈S lossattack(x+𝝳|𝛉), 

where S is a neighborhood of x.
○ Example: lossattack= negative cross 

entropy of 𝐟𝛉(x) and y
● Certified robustness

○ Find a neighborhood R around x 
such that 𝐟𝛉(x) = 𝐟𝛉(x’) for any x’∈R

○ Example: randomized smoothing

23

Jeremy Cohen, Elan Rosenfeld, and Zico 
Kolter. Certified adversarial robustness 
via randomized smoothing. ICML 2019

https://arxiv.org/abs/1902.02918
https://arxiv.org/abs/1902.02918
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Models of different sizes

BiT: Big Transfer (CNN); RN: ResNet

Intrinsic Robustness in Vision Transformers (ViTs)
ImageNet-C Accuracy under 

AutoAttack

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial 
robustness with an ensemble of diverse parameter-free attacks. ICML 2020

https://arxiv.org/abs/2003.01690
https://arxiv.org/abs/2003.01690


More Key Findings

● ViTs outperform others on most but not all 
OOD benchmarks [AAAI’22]

● Pure ViTs possess better certified robust 
accuracy than CNNs [TMLR’22]

● Modern CNN design helps bridge the 
performance gap between CNNs and ViTs 
(e.g., ConvNeXt, MLP-Mixer, SEResNet) 
[TMLR’22] 

● (Standard) pre-training helps OOD 
robustness but not necessarily adversarial 
robustness [AAAI’22, TMLR’22]

25

ImageNet-9:  
detecting vulnerable 
image foregrounds

ViT B/16



Robustness Attribution for ViTs

26

Better use of global context Lower model sensitivity

Dong Yin, Raphael Gontijo Lopes, Jon Shlens, Ekin Dogus Cubuk, and Justin Gilmer. 
A fourier perspective on model robustness in computer vision. NeurIPS 2019

Smoother loss landscape

*More results can be found in “Vision Transformers are Robust Learners”

https://arxiv.org/abs/1906.08988
https://arxiv.org/abs/2105.07581


(Adversarial) Robustness Transfer: 
From (Self-supervised) Pre-training to 

Fine-tuning

27



Robust Self-supervised Pre-training
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● Given a robust pre-trained model, is it possible to transfer robustness to 
downstream tasks?

● Self-supervised pre-training: Rotation prediction [Gidaris et al., 2018], Jigsaw 
[Noroozi et al., 2017], Selfie [Trinh et al., 2019], SimCLR [Chen et al., 2020]

(SimCLR architecture; image from TDS blog)
[Chen et al., 2020]

https://arxiv.org/pdf/1803.07728.pdf
https://arxiv.org/pdf/1603.09246.pdf
https://arxiv.org/abs/1906.02940
https://arxiv.org/abs/2002.05709
https://towardsdatascience.com/improving-transformation-invariance-in-contrastive-representation-learning-63f881ea1ac2
https://openaccess.thecvf.com/content_CVPR_2020/papers/Chen_Adversarial_Robustness_From_Self-Supervised_Pre-Training_to_Fine-Tuning_CVPR_2020_paper.pdf


Robust Self-supervised Pre-training

29

● Challenge: In most of robust self-supervised pre-training mechanisms, robustness is 
difficult to transfer to downstream fine-tuning tasks unless robust fine-tuning is also 
performed [Chen et al., 2020]

● Solutions to improving robustness transfer from pre-training to fine-tuning:
○ Adversarial contrastive learning [Fan et al., 2021, Gowal et al., 2021]
○ Robust pre-training + model sparsification [Chen et al., 2022]

https://openaccess.thecvf.com/content_CVPR_2020/papers/Chen_Adversarial_Robustness_From_Self-Supervised_Pre-Training_to_Fine-Tuning_CVPR_2020_paper.pdf
https://arxiv.org/pdf/2111.01124.pdf
https://openreview.net/forum?id=bgQek2O63w
https://proceedings.mlr.press/v162/chen22ae/chen22ae.pdf


Adversarial Contrastive Learning (AdvCL) 

30

● AdvCL [Fan et al., 2021]: Leverages adversary-related data transformations (i.e., ‘views’) 
to create ‘positive’ data pairs 

SLF: Standard Linear Fine-tuning
AFF: Adversarial Full Fine-tuning

Pre-training

Fine-tuning

https://arxiv.org/pdf/2111.01124.pdf


Robust Pre-training + Model Pruning

31

● Model Pruning: Finding sparse subnetwork from dense model without performance loss
— ‘Winning ticket’ in lottery ticket hypothesis (LTH) [Frankle et al., 2018]

[Chen et al., 2022]

● Sparsity from pre-trained robust model 
can be transferred on diverse downstream 
tasks, to preserve BOTH standard and 
robust generalization, under BOTH 
standard and adversarial training regimes

https://arxiv.org/abs/1803.03635?fileGuid=W7n6QtTkCpYUnzp6
https://proceedings.mlr.press/v162/chen22ae/chen22ae.pdf


Part 3
Foundation Models for Code

32



Emerging AI Applications to Code/Programming Language

33

2017

NeurIPS’21

DARPA AIE 2021



Emerging AI Applications to Code

34

● Autocompletion [Svyatkovskiy et al., 2021] 

● Code repair [Yasunaga et al., 2021] 

https://ieeexplore.ieee.org/abstract/document/9463109
http://proceedings.mlr.press/v139/yasunaga21a.html


ML Model for Code Tasks

35

Example: Code summarization task [Allamanis et al., 2016] 

http://proceedings.mlr.press/v48/allamanis16.html


(Worst-case) Robustness Problem of Code Model?

36

Evaluation: “Perturb” an input program (P) to justify robustness of code model
Challenge: How to define “code perturbation”?

Image:

Visual similarity:



(Worst-case) Robustness Problem of Code Model?
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Evaluation: “Perturb” an input program (P) to justify robustness of code model?
Challenge: How to define “code perturbation”?

Program (P):

Functional similarity: ?



Obfuscation as Perturbation Operation in Code

38

Original program Obfuscated program

Replacing x with Q:

Obfuscation: Variable 
renaming/replacement

?

Replacing x with Q:



Obfuscation as Perturbation Operation in Code
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Obfuscation: Two broad classes – replace and insert transformations



Obfuscation as Perturbation Operation in Code

40

Set item

Set item

WriteAdversarial program

Obfuscated program (non-adversarial)

Original program (non-adversarial)

Code model



Adversarial Program for Robustness Evaluation of Code Models
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Adversarial program: Optimized obfuscated code to fool code models

Two design problems: 
● Site selection: Where to perturb in the code?   
● Perturbation content: How to perturb? 

Solution: First-order optimization-based adversarial program generation methods 
[Yefet et al., 2020] [Ramakrishnan et al., 2020] [Srikant et al., 2021]

https://arxiv.org/pdf/1910.07517.pdf
https://arxiv.org/abs/2002.03043
https://openreview.net/forum?id=PH5PH9ZO_4


Adversarial Program Generation

42

Target 
label

Optimization for site selection 
and perturbation 



Example of Adversarial Program for Code Summarization
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Example from [Srikant et al., 2021]

Random site 
selection

Optimized 
site selection

Original 
program

https://openreview.net/forum?id=PH5PH9ZO_4


Takeaways – Robustness Evaluation of Code Models

44

● Code obfuscation is a natural way to define code ‘perturbation’

● There exists worst-case obfuscation that can transform ‘benign’ code to 
‘adversarial’ code for ML models

● In design of adversarial code, both ‘where to perturb’ and ‘how to perturb’ matter



How to Robustify Code Models?

45

Contrastive representation learning for code: Since ‘perturbation’ 
(obfuscation) is a type of code transformation, leverages contrastive learning to 
learn ‘invariant’ code representations across ‘diverse’ transformations 

E.g., ContraCode (Jain, et al., 2022)

Positive 
pair

Negative 
pairs

https://arxiv.org/abs/2007.04973


Contrastive Representation Learning (from Vision to Code)
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Contrastive learning: Learn representations by prompting data transformation invariance 
(Chen et al., 2020; Foster et al., 2021)

(SimCLR architecture; image from TDS blog)

Image transformations (positive pair)

https://arxiv.org/abs/2002.05709
https://arxiv.org/pdf/2010.09515.pdf
https://towardsdatascience.com/improving-transformation-invariance-in-contrastive-representation-learning-63f881ea1ac2


Robustness from ‘Adversarial’ Views of Code

47

● Regards adversarial code (worst-case obfuscation) and benign code as a positive pair, 
then contrastive learning enforces ‘robustness’ due to transformation ‘invariance’

Feature 1

Feature 2

Representation 
network

Defender: 
Maximize 
similarity

Attacker: minimize similarity

Source 
program

Obfuscation 1
(random)

Obfuscation 2
(adversarial)

Code example from [Yefet et al., 2020]

Two-player 
game

https://arxiv.org/pdf/1910.07517.pdf


Robustness Gain by Adversarial Code Contrastive Learning

48

Ground-truth program

Perturbed program

Vanilla representation network Adv. CL-enabled network

Explanation by example (example w/ similar representation)

Same program
(robust)

Different 
program

(non-robust)



Contrastive Representation Learning (Vision & Code)

49

Contrastive 
learning

Image transformations (Chen et al., 2020)

Adversarial code transformations 

Contrastive 
learning

https://arxiv.org/abs/2002.05709


Part 4
Hands-on Demo & Code Walkthroughs

50

bit.ly/nips-22-content

http://bit.ly/nips-22-content


Overview

● Evaluation setup for vision models (image classification) 
● Evaluation setup for code models (code summarization) 

51



Modality I: Computer Vision

● Empirical evaluations of similar capacity models on the robustness 
benchmark datasets (image classification: top-1 accuracy, AUPR, mFR, 
mT5D). 

● The datasets will cover different aspects like corruptions, perturbations, 
background dependence. 

● Possible attribution factors of improved robustness. 
○ Masking 
○ Sensitivity analysis  
○ Frequency spectrum 
○ Loss landscape
○ Mean attention distance (relative receptive field) 

52



Modality II: Code

● Empirical evaluations of similar capacity models on the task of code 
summarization. 

● Record F1-scores of the models on clean examples and adversarial 
examples. 

○ Random site-selection + optimal site-perturbation. [Ramakrishnan et al., 2020]
○ Optimal site-selection + optimal site-perturbation. [Srikant et al., 2021]

53

Thanks to Jinghan Jia (Michigan State University) for helping with this part. 

https://arxiv.org/abs/2002.03043
https://openreview.net/forum?id=PH5PH9ZO_4


Part 5
Concluding Remarks and Q&A
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Take-Aways

● Foundational robustness: evaluation and enhancement of model correctness 
against natural and adversarial data shifts - a foundation of trustworthy AI

● The prevalence of foundation models also shift the focus of robustness from 
task-centric to representation-centric

● Lunch is still not free: Higher standard accuracy of downstream tasks using 
foundation models ≠ improved robustness

● Methods to evaluate and improve foundational robustness in pre-training and 
fine-tuning stages

● Robustness comes best with practice
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Resources

● J. Z. Kolter and A. Madry: Adversarial Robustness - 
Theory and Practice (NeurIPS 2018 Tutorial)

● Pin-Yu Chen: Adversarial Robustness of Deep 
Learning Models (ECCV 2020 Tutorial)

● Pin-Yu Chen and Sijia Liu: Zeroth Order Optimization: 
Theory and Applications to Deep Learning (CVPR 
2020 Tutorial)

● Pin-Yu Chen and Sayak Paul: Practical Adversarial 
Robustness in Deep Learning: Problems and Solutions 
(CVPR 2021 Tutorial)

● Pin-Yu Chen: Holistic Adversarial Robustness for Deep 
Learning (MLSS 2021 Tutorial)

● Pin-Yu Chen: Adversarial Machine Learning for Good 
(AAAI 2022 Tutorial)
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https://www.youtube.com/watch?v=TwP-gKBQyic
https://www.youtube.com/watch?v=TwP-gKBQyic
https://www.youtube.com/watch?v=-QbKyOuEoxc
https://www.youtube.com/watch?v=-QbKyOuEoxc
https://www.youtube.com/watch?v=17AL1mS3uxw
https://www.youtube.com/watch?v=17AL1mS3uxw
https://sites.google.com/view/par-2021
https://sites.google.com/view/par-2021
https://youtu.be/rrQi86VQiuc
https://youtu.be/rrQi86VQiuc
https://sites.google.com/view/advml4good

