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What is Neurosymbolic Programming?



Ingredients for Machine Learning
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This tutorial is mainly
about these two




Deep Neural Networks
input Key Benefits:

features
hidden

* Expressiveness
a weights featu

weights * Differentiable Learning
@§ ms ° ............

900 90
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Slide by Joe Marino



Weaknesses of Deep Learning

hidden layer 1  hidden layer 2 hidden layer 3

input layer

Uninterpretable — Hard to trust/control Lack of domain knowledge —
Unreliable training, high sample complexity

Opaque inductive bias — Brittle model



Key Insight: Use Symbolic Knowledge

A.k.a.“Code” or “Programs”



Two Ildeas

A. Neurosymbolic function representations

B. Neurosymbolic learning algorithms



A. Neurosymbolic Function Representations



/ Neurosymbolic Programs \
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Controller

&)

Environment

Application: Control

state ()
reward

action

Goal: Control a car.

Symbolic code:

PID(i,s*,kp,kI,kD>(S) = ka(S — S*) + ]C]

SwitchingPID(s) = if (s|TrackPos| < 0.011 and s|TrackPos| > —0.011)

then PID ;o 0.45,3.54,0.03,53.39) (5)
else PID (rpm,0.39,3.54,0.03,53.39) (S “then accelerate,

“If the car is aligned with
the axis of the track...”

DL/ S—S*)

otherwise slow

[Verma et al.,2019] down”



https://arxiv.org/abs/1907.05431

Machine learning

Controller

state ()
reward

action

Learning a controller.

Environment

|. Collect data
* For example, from exploration of the world or human demonstrations

2. Select a suitable model class (e.g.,a category of neural networks)

3. Learn a function from the model class that maximizes reward.



Control with neurosymbolic programs
[Cheng et al., 2019]

Idea: Models are programs with neural and symbolic components

(1 —_)\) SwitchingPID(s) + A fo(s)

where 0 < A <1

Neurosymbolic Controller

Symbolic controller used as a “regularizer”


https://arxiv.org/abs/1905.05380

Neur'osymbolic vs. Neural [Verma et al., 2019]

Video by Abhinav Verma


https://arxiv.org/abs/1907.05431

Neural Control with Continuous-Time
Symbolic Models (shietal, 20193 NNs to model

residual dynamics

. Symbolic
f(x) = Physics(x) + f,(x) |
( |
p =V, mv =mg + Rf, +{,
Dynamics: : :
R=RS(w), Jw=JwXw+T,+ T4
-~ £, =100,0,7]7
Top = [Tx,Ty,TZ]T
Control: < i |
T CT CT CT cT %
[T:c ] L [ 0 Epiliin 0 — Gl i no
Ty T _CTlarm 0 CTlal“m 0 n2
_ LTz —CQ CQ —CQ CQ ng
E= 4 p=d

|
Symbolic


https://arxiv.org/abs/1811.08027

Concrete Instantiations

o= ) 2
ol Vs . :
Si—ﬁ = U Wind:3:Imfs¢ ™
View b N . -]
B With our method, the UAV precisely follows Yy
an ellipse through two narrow gates in wind. |

, §

4\
3 . Front view

Boundary Conditions Dynamic Environments Multi-agent Interactions
https://arxiv.org/abs/1811.08027 https://arxiv.org/abs/2205.06908 https://arxiv.org/abs/2003.02992



https://arxiv.org/abs/1811.08027
https://arxiv.org/abs/2205.06908
https://arxiv.org/abs/2003.02992

Neurosymbolic Programs in Al4Science
[Sun et al., 2022]

Goal: Quantify behavior from pose

Keypoint Feature | Classification e U
Estimation Extraction Model SRR
Keypoint Annotations Behavior Annotations
nose
left ear
neck
left hip
right hip
tail

Mount Sniff  Other


https://arxiv.org/abs/2210.05050

Task Programming [sun etal. 20211

Step |: Define important attributes (similar to feature design)

|dentify important attributes Write programs

Nose coord mouse | (x|, yl)
Nose coord mouse 2(x2, y2) Nose-Nose

l

Distance
dist_nose(x|,yl, x2,y2):

x_diff = x2 - x|
T y_diff=y2 -yl A(T)
dist = norm(x_diff, y_diff)

T trajectory



https://arxiv.org/abs/2011.13917

Task Programming

Step 2: Use to structure representation learning

ﬂ

T Encoder

Self-supervised

_aﬂa

Decoder 1

Decoder 2

i

Self-supervised Loss

L(7)

L(T,A(7))



Taxonomy of Neurosymbolic Programs

Additive composition [Cheng et al.,2019]

-

x —

"

Neural v

~
4

)

Symbolic-after-neural [Valkov et al., 2018]

X —

/

Neural v,

Neural vy,

Neural-after-symbolic [Sun et al., 2021]

x —

-

Neural v,

Symbolic
-

~

)

—>y

Branching composition [Anderson et al., 2020]

X —

Neural v



https://arxiv.org/abs/2009.12612
https://arxiv.org/abs/1804.00218
https://arxiv.org/abs/2009.12612
https://arxiv.org/abs/1905.05380
https://arxiv.org/abs/2009.12612
http://proceedings.mlr.press/v119/zhan20a/zhan20a.pdf

B. Neurosymbolic Learning Algorithms



Learning as Symbolic Program Synthesis
[Ellis et al., 2021]

Interpretable morpho-phonological

ing Morpho-phonol
rules for human languages from very few Understanding Morpho-phonology

examp|es (/open/, [r@ (/d/, [tense:PAST])
Algorithm synthesizes rules using (/opend/, [root:OPEN;tense:PAST])

solvers for Boolean satisfiability (SAT)

/wokd/

Underlying form Surface form

[wokt]

Used to learn rules for 70 datasets
spanning 58 languages


https://www.nature.com/articles/s41467-022-32012-w

Neurosymbolic Program Synthesis

Program synthesis

Heuristic search M
Solver-based search
Deductive pruning

Version spaces

Machine learning

Stochastic gradient descent
Sampling-based optimization
Variational approximations

Learning to learn




Neurosymbolic Program Synthesis

(I) Data Neurosymbolic program
(X1, Vi) e N\

. if(Ax + b = 0)
(2) Programming : '* j> - oy
language (DSL L) Learner

(3) Additional @

constraints (), argminge ;. By y)~p [1(F(x) # )l
e.g., safety, robustness st.f E @




Domain-Specific Language
(“Family of programs”’’)

Program syntax defined as a grammar: if (s[TrackPos| < 0.011 and s[TrackPos| > —0.011)
| then PID o 0.45,3.54,0.03,53.39) ()
a(s) u= a«——— Action else PID ;pn0.39,3.54,0.03,53.39) (S)
/ Op(a,...,ay,s) « Aleebraic
Program . operations
structure if b then 1 else 0%
Do (s)

Current state

Program semantics implemented

Predefined parametrized . .
using an interpreter

functions, capturing
prior knowledge



Neurosymbolic Program Synthesis
4 )

a(s) == a|Oplai(s),...,ar(s)) |if b then a;(s) else as(s) |
Po(a1(8),...,ax(s))
b = ¢(s) | BOp(by,...,bx)

Domain Specific Language (DSL): “Family of programs”

o J
¥

Learning Objective Learning Algorithm :
[(“Loss Function”)] » [(program synthesis) » Neurosymbolic Program (a, 6)

[ Downstream Analyses] g

e




Observations

Traditional neurosymbolic learning

* Fixed program structure a — train parameters 0 via gradient descent

* Setting & as a neural network — standard deep learning

* Finding a is analogous to neural architecture search
* Sometimes call & the “program architecture”

* Classic program synthesis focuses on a, with 8 being very simple

- )
if (s[TrackPos] < 0.011 and s[TrackPos| > —0.011)

then PID (rpn 0.45,3.54,0.03,53.39) ()

else PID (1pn0.39,3.54,0.03,53.39) (S)

- J

Example
Program:




Taxonomy of Neurosymbolic Program Synthesis

Neural-Guided Symbolically o .
Search Guided DL Distillation Relaxation

in — A — out

Components

Goals
map in A 0O ‘




Neural-Guided Search [Deviin et al., 20177

* Leverage the ability of NN to learn complex
conditional distributions

* Network guides the search for programs that
satisfy the goals

map in A 0O


https://arxiv.org/abs/1703.07469

Symbolically Guided Deep Learning

[Sun et al., 2021]

* Symbolic knowledge can be used to guide
the training of neural networks

* When you want a network that is consistent
with prior knowledge

* When you want to improve data efficiency and
better generalization



https://arxiv.org/abs/2011.13917

Distillation [verma et al., 20197

* Use the neural network as a starting point for
program synthesis

* Replace neural components with symbolic ones
* To improve interpretability and analyzability
* To better generalize out of distribution
* To ensure more predictable behavior



https://arxiv.org/abs/1907.05431

Relaxation [shah et al., 20207

* Replace symbolic components with neural proxies

in - ) o e Can help leverage the information in the symbolic
component into a larger DL pipeline

* Can help guide the search for symbolic components



https://arxiv.org/abs/2007.12101

Component Discovery (eiis et al., 2020]

Components

* Given a set of goals, we want to learn collections of components
that can help us achieve those goals.

* A form of abstraction where we want to identify the common structure
in a set of goals and capture it symbolically into a set of useful
components

* Requires deep interaction between neural and symbolic reasoning



Neurosymbolic learning isn’t new...

...but it’s a good time to push on it!

* Recent progress in symbolic reasoning as well as deep learning

* New algorithms that can scale

* Demand by domain experts



Deep Dive:

Neurosymbolic Programming for Science



Behavior Analysis in Science

Pharmacological
Neural Activity Evaluation

_ I

Strain variations

Observed Behavior ﬁl @)




Behavior Quantification

How to categorize behavior at each frame?

>]100 annotation hours
per day of recording

CalMS21 Dataset: https://arxiv.org/pdf/2104.02710.pdf



https://arxiv.org/pdf/2104.02710.pdf

Dataset Overview

Keypoint Behavior
Estimator Classifier

sniffgBritol e

Observed Behavior Keypoints Behavior Labels

(from experts)

Code: Use neurosymbolic
programming to learn relationship

The Caltech Mouse Social .
between pose and behavior

Interactions 2021 Dataset

CalMS 21

CalMS21 Dataset: https://arxiv.org/pdf/2104.02710.pdf



https://arxiv.org/pdf/2104.02710.pdf

Behavioral Attributes / Features

Dataset:
* Raw trajectories
* Expert-annotated behaviors
* Behavioral attributes

Designed by domain experts
for behavior analysis

'i!. >
AEAL '

B LT 4
AR S
-

Facing Angle .o Sogils r

e Noter € WS SN
sy

" Head-Body 7

v SR
&
A0 0 AR 0

l Head-Body
Angle (

Task Programming: https://arxiv.org/pdf/2011.13917.pdf



https://arxiv.org/pdf/2011.13917.pdf

Defining the space of programs

Feature Selections Temporal Filters Compositions
M feature vector Q Vi3 8:) \
O———0 /W | Subprogram 1
S eed an ‘l'> o fi+t...+anfn=
P o \,, {, f tanf, /.
— s ‘| +
T )

Ji = In J
Q@ Subprogram 2

Distance
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Feature Weight + Bias

@
a

Program Examples

Program Learning

AccelerationSelect

— res
— intr

bias »

-150 —-100 =50 0 50 100 150

Frame # with respect
to predicted frame

ht w/o\ut Bias

Featuré W

eig
Feature Weight + Bias

TangentialVelocitySelect

— res
— intr
bias

-150 —-100 =50 o 50 100 150

Frame # with respect
to predicted frame

F1: 0.86

o
N
N

ht w/out Bias

o
=

010"

eig

o
o

o
°
S

Featuré W

Feature Weight + Bias

~0.2

-0.34

-0.4

~0.3

0.6 1

|D Conv Net

(Visualizing feature subset)

AccelerationSelect

— res
— intr
bias

-150

-100 =50 0 50 100 150

Frame # with respect
to predicted frame

o
o

| o =)
<) o =

Feature Weight w/out Bias

|
o
N

Feature Weight + Bias

~034

-0.4

-0.5

-0.6

-0.7

TangentialVelocitySelect

\

“\‘j“ \/\ﬂ m 1 AWWVA

/\vAWu N

— intr
bias

-150 -100 =50 0 50 100 150

Frame # with respect
to predicted frame

F1: 0.84

| ) ) o
°© ) - o

o
]

Feature Weight w/out Bias

Interpreting Annotation Differences: https://arxiv.org/pdf/2106.06 | 14.pdf



https://arxiv.org/pdf/2106.06114.pdf

Program Visualizations

Annotations
[  Filter 1 interact

Y

I - - - -
————
e

Edit hotkeys
Edit colors

h1: Filter] (MinResNoseKeypointDistanceSelect()

Human Labels I ||
Program Output |

S S

-20 -15 -10 -5 0
Wind: - . - Plotting: raw (scal... ¥ units v | lines ¥
indow (sec) 20 Trace zoom: 4+ ing: raw ( = ' 20 -15 -10 -5 0 S 10 15 20
Channel thresholded featu..”  Add  Delete Duplicate  Behaviors Add  Delete Fast Edit da MARS time (sec)
Mouse 1 v Session 1 v Trial 1 v Cht v \min_res_nose_dist -~ Add :‘:d Edit Thresholds

MARS (Segalin et al.)
neuroethology.github.com/MARS



https://neuroethology.github.io/MARS/

Code Structure

* Data Visualization
* Plot trajectory samples

 Neural Network
* Train a I D Conv Net

* Program Learning
* Train program given structure

* Visualize Model Weights
* Open-Ended Exploration

Weights for Channel 0

Sequence 0: not investigation

frame 000.png

Sequence 1: investigation
frame 000.png

WindowSAvg( Or(AccelerationSelect, OverlapBboxesSelect) )

0.5 1

0.0

-05 1

-1.0

Weights for Kernel 0

Weights for Kernel 1

T T




Code Walk-Through




Outline of Tutorial

What is Neurosymbolic Programming!?

Deep Dive: Neurosymbolic Programming for Science
Algorithmic Techniques

Deep Dive (continued)

Algorithmic Techniques (continued)

o U1 AW N —

Conclusion



Algorithmic Techniques



Neurosymbolic Programming

(1) Data

Neurosymbolic model (a, 9)
(xi, i)

/if(Ax + b > O)\

(2) Programming L: : :> - ke -7
language (DSL L) earner

(3) Additional @ * s the program structure
constraints (¢) * 0 are the program parameters

Neurosymbolic models + neurosymbolic learning algorithms



Learning as Bilevel Optimization

structure parameters

/>

min (m@in Loss(a,0) + s(a))
a

* Loss(a, ) quantifies fit to the dataset

* The structural cost s(a) penalizes complex program structures.



m;n (mgn Loss(a,0) + s(a))

Learning Strategy

Domain-Specific
Language (DSL)

A

Learning Objective Learning Algorithm N .
eurosymbolic Program («a, 6
[ (““Loss Function”) ] » [(aka synthesis) » Hresy I 8 (@.0)

* Setting a as a neural network — standard deep learning

* Finding a is analogous to neural architecture search
* Sometimes call a the “program architecture”

* Classic program synthesis focuses on a, with 8 being very simple



Taxonomy of Neurosymbolic Program Synthesis

Neural-Guided Symbolically o .
Search Guided DL Distillation Relaxation

in — A — out

Goals
map in A 0O ‘




Neural-Guided Search

map in A0



Enumerating programs

* Program enumeration is really a graph search problem

More
complete
program

Choices on how to
extend the program

Partially
completed
program



Enumerating programs

* Program enumeration is really a graph search problem

x:=atb
y:=x+2
z:=y+2

Choices on how to
extend the program

X :=atb
y:=x+2



Enumerating programs

* Program enumeration is really a graph search problem

map input ??

Choices on how to
extend the program

map 17 2?



Algorithmic Idea: Type-Directed Enumeration



Top-Down Program Synthesis

Build up a search graph: Ol (o folal ¢ (hey. 7)[ )

* The root is the empty program v/\ m

* Internal nodes are partial program structures [2x. map x NNggq

* Sinks a are complete program structures
« Come with costs C(a) = m@in Loss(a,0) + s(a)

 Edges model single derivatio

Challenge: Too many programs! }

Goal: Find path from the root \vewrcusc<coconm




Type-Directed Search

* Pro: Can lead to useful pruning

* Con: Doesn’t engage with the quantitative aspect of the problem.

Task . Numbe? of programs
size=4 size=5 size =6

Task 1 8182 110372 1318972

Task 2 12333 179049 2278113

Notypes 1. k3 17834 278318 3727358
Task4 24182 422619 6474938
Task 1 2 20 44
+ Types  TsKk2 5 37 67
Task 3 9 47 158
Task 4 0 51 175

Source: Valkov et al., 2018



Learning to Search



Basic ldea

[Task, map]

[ Ax.map x g* ] [ Az. foldl x (Azy. h™)| ]]

o AN

Idea: Learn weights on the search tree from a set of programming tasks.



Simplest Case:
Deterministic Greedy [Task, map]

Ax.map x g* ] [ Az. foldl x (Azy. h™)| ]]
ws = 0.25 wg = 0.75

[ws = 0.25,wg = 0.75]

Runtime: greedily follow NN’s most preferred predictions



Next Step:
Beam Searc h [Task, map]

Ax.map x g* ] [ Az. foldl x (Azy. h™)| ]]

ws = 0.25 we = 0.75
[ws = 0.25,wg = 0.75]

Runtime: keep track of top-K most likely sequences
* (e.g.,top-K greedy)

Devlin et al. RobustFill: Neural Program Learning Under Noisy 1/0. |CML 2017.



Why Would This Work?

[Task, map]

* NN is trained on many related synthesis tasks
* (unlike Neural Relaxations)

* NN has learned what makes a good completion

* Thus, can greedily follow NN’s predictions
* (similar to Language Models where NN can complete a prompt)



Learning Setup

)
\ y
\\ \\

\\ (Input, Output) }

E Program }

(not always needed)

_/

E.g., programs and inputs are generated randomly

Devlin et al. RobustFill: Neural Program Learning Under Noisy 1/O. ICML 2017.

[ (Input, Output) j

[ Program }

(grow the program one step at a time)



Sequence Prediction

/ \ / : e s \ ﬁPT—B is a deep neural network that\
| like artificial

Why do children hate uses the attention mechanism to
the big brown bear? intelligence predict the next word in a sentence.

‘ It is trained on a corpus of over |

The big brown bear billion words, and can generate text at
scares the children character level accuracy. GPT-3's

with its roar ﬁ%ﬂﬁ'*l%ﬁﬁ architecture consists of two main
\ / \ / &omponents... J

Q&A Translation Completion




Neural Architectures for Sequence
Prediction

feature vectors

l

Embedding

N

Common Architectures:
e Recurrent NNs
* Transformers (Attention)

Input Seq Output Seq

(Can handle variable
length inputs/outputs)



January
February
March

jan
feb

mar

=)

-

\

RobustFill

~

)

Output program generated token by token

Devlin et al. RobustFill: Neural Program Learning Under Noisy 1/0. |CML 2017.

‘ Program

ToCase(Lower, Subsrt(l, 3))



'

AR

Model prediction:
4, End) | Const(.)

Replace_Space_Comma (GetSpan (Proper,

GetToken_Proper_-1 | EOS

1, Start, Proper,

Jacob Ethan James
Alexander Michael
Elijah Daniel Aiden
Matthew Lucas
Jackson Oliver
Jayden Chris Kevin
Earth Fire Wind
Water Sun

Jacob, Ethan, James, Alexander
Michael

Earth,Fire,Wind,Water.Sun

L Jacob, Ethan, James,Alexander}

Michael

Earth,Fire,Wind, Water.Sun

Tom Mickey Minnie
Donald Daffy

Jacob Mickey Minnie
Donald Daffy
Gabriel Ethan James
Alexander Michael
Rahul Daniel Aiden
Matthew Lucas

Tom,Mickey,Minnie, Donald.Daj

Gabriel, Ethan, James, Alexands¢
.Michael

- flom, Mickey,Minnie,Donald.Dal

e o e e e e e e e e e e e e e e e e - — —

pFabriel, Ethan, James, Alexands
Michael

Ly

174

bvin

Steph Oliver Jayden Steph,Oliver, Jayden, Chris.Kewireph,Oliver, Jayden, Chris.Kq
| Chris Kevin
Pluto Fire Wind Pluto,Fire,Wind,Water.Sun Pluto,Fire,Wind, Water.Sun
Water Sun
Input True Output Program’s Output



Imitation vs. Reinforcement Learning

Imitation learning

Reinforcement learning

O 0%'%0 v
R KK

K> 9,
Specification; ————> o%{i&i}%o‘e:go > Program;

<X
Aelsie
2V

state action

Environment
PA——
?» Reward




Synthesis with REPL

Initial
state

Goal
New New
state state

Interpreter

Interpreter

New
state

Interpreter




Learning to synthesize incrementally |

Next Instruction:
Subtract($1, $2) .5
Rectangle(....) 4
Circle(...)

Next Instruction:
Subtract($3, $1)| .5
Subtract($3, $2) .4
Rectangle(....) A

canvas 3




earning to synthesize incrementally 2

value function



Estimating the “Cost to Go”’

* P* = partial program (non-terminal nodes)

* C(P") = completions of P* (reachable terminal nodes)

“Cost to Go”

|
| 1

Heuristic Estimate: d(P*) = P%lg [AS(P P ) + mln Loss(ap, 9p)]

| |
Additional Structure Cost Training Loss

* If d(P”) is a lower bound it becomes an “admissible heuristic”



Guiding program search

So far
* Neural network policy to guide search
* Value function scores individual states




Guiding program search

* Problem:You only get ground truth
on the leaves of the search tree

* Value for an intermediate node is only

. s
AN

s(P) + m@in Loss(ap, 8p)



Guiding program search

* Problem:You only get ground truth on
the leaves of the search tree

* Value for an intermediate node is only an

é estimate
é% * Can we get a better estimate with DL?
§'§@

s(P) + m@in Loss(ap, 0p)



Learning with Neural Heuristics

Shah et al. Learning Differentiable Programs with Neural Admissible Heuristics. NeurlPS 2020.



Guiding Search with Neural Relaxations

Ax.mapx g | [ Mz foldlx (Azy. h*)[]]

Fill hole with NN

If a large neural network
cannot fit this hole, then a
neurosymbolic completion
also cannot

Train parameters

Use training loss to guide search

Learning Differentiable Programs with Admissible Neural Heuristics, Ameesh Shah* Eric Zhan*, et al., NeurlIPS 2020



Motivating Observation/Assumption:
Functional Representational Power

Neurosymbolic Models

‘““Large’ Neural Models

‘““Neural Relaxation’’ Every neurosymbolic model can be (approximately) represented by some “large” neural model.



Implication
(abstract form)

Large Neural

/

VP,Af € Fst.d(f) <d(P)

/ \/

Neurosymbolic

Any Cost Function

Slack due to approximation
error or training ability

e

€

We can train an admissible heuristic!

‘““Neural Relaxation’’ Every neurosymbolic model can be (approximately) represented by some “large” neural model.



Informed Search (e.g.,A%)

* Use d(P") to prune the search

[ Az. foldl x (Azy. h™)] ]]

N
/ Can Prune This Branch!

/ Structural Cost \ Training Loss

s(C Zemapxg” ) + d(([Zemapxg’ ]) > s(rz.z))+ Loss([ .z )

\ “Cost to Go” Heuristic

Suppose:




A* Search

* Priority queue of current leaf nodes:
 Sorted by s(P*) + d(P")

* Pop off top program P*
* If P* is complete, terminate
* Else, expand P", add child nodes to priority queue

Lower bounds “Cost to Go”
L J

* Guarantee:if d(P") is admi'ssible, A* will return optimal P

 Tighter d(P") prunes more aggressively
 Uninformed d(P") (e.g., always 0) => uninformed search




o 0.45 =L I
NEAR: Results vC

0.40; — genetic

0,35 - |DDFS-NEAR

O —  A*-NEAR

U 0.30

c

©

o 0.251
0.20

Order of magnitude speedup!

0.15- <—— NEAR
0.10

100 200 300 400 500
Wall-clock time (min)

Learning Differentiable Programs with Admissible Neural Heuristics, Ameesh Shah* Eric Zhan*, et al., NeurIPS 2020



NEAR: Neural Admissible Relaxations

Ax.mapx g | [ Mz foldlx (Azy. h*)[]]

Fill hole with NN

If a large neural network
cannot fit this hole, then a
neurosymbolic completion
also cannot

Train parameters

Use training loss as admissible heuristic

Learning Differentiable Programs with Admissible Neural Heuristics, Ameesh Shah* Eric Zhan*, et al., NeurlIPS 2020



Summary

* Today, we saw two strategies for learning neurosymbolic programs
* Type-directed enumeration, informed search via admissible neural heuristics

* Next: Deep Dive Continued
* Code for enumeration & NEAR



Behavior Quantification

How to categorize behavior at each frame?

Code: Use neurosymbolic
brogramming to learn
relationship between pose and
behavior

CalMS21 Dataset: https://arxiv.org/pdf/2104.02710.pdf


https://arxiv.org/pdf/2104.02710.pdf

Code Structure: Enumeration

lyes | python train.py \
--algorithm enumeration \
--exp_name investigation base \

* Running Enumeration -trial 1\

--seed 1 \

--dsl_str "default” \
. —
Base DSL --train_data "data/calms21 taskl/train_data.npy"” \
--test_data "data/calms21_taskil/test_data.npy” \

o Morlet Filter DSL --valid data "data/calms21 taskl/val data.npy” \

--train_labels "data/calms21_taskl/train_investigation_labels.npy" \

° 1 --test_labels "data/calms21 taskl/test investigation labels.npy” \
NeurosymbOIIC DSL --valid_labels "data/calms21_taskl/val_investigation_ labels.npy"” \

--input_type "list" \

--output_type "atom" \

--input_size 18 \

--output_size 1 \

--num_labels 1 \

--lossfxn "bcelogits" \

--learning rate ©0.0001 \

--symbolic_epochs 12 \

--max_num_programs 25 \

--class_weights "2.0"

Evaluating program Start(MorletFilterOp(OverlapBboxesSelect())) on TEST SET
F1 score achieved is 0.6272
Additional performance parameters: {'hamming_accuracy': .74, 'all fis': array([0.80040942, ©.62715105])}



Code Structure: Enumeration

1 # Directory names to plot inside near code/results

2 run_names_to plot = ['investigation base enumeration sd 1 @e1’,

3 "investigation morlet enumeration sd 1 @e1']
a

5

runtime, f1 = parse runtime f1 from logs(run names to plot)

4]
7 plot runtime f1(runtime, 1, run names to plot)

® investigation_base_enumeration
investigation_morlet_enumeration
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Code Structure: Enumeration

* Implement Temporal Filter

* Open-Ended Exploration

Symmetric Filter
(provided)

Asymmetric Filter
(implement)

10 1

0.8 1

0.6 4

04 1

0.2

10 1

0.8 1

0.6 1

04 1

0.2 1

0.0 1

10

12

10

12




Code Structure: NEAR

lyes| python train.py \
--algorithm astar-near \

° Running NEAR ::::?g;ar:e\investigation_base \

--seed 1 \
d Base DSL --dsl_str "default"” \

--train_data "data/calms21 taskl/train_data.npy"” \
* Morlet F||te|" DSL --test_data "data/calms21 taskil/test data.npy” \

--valid data "data/calms21 taskl/val data.npy"” \

--train_labels "data/calms21_taskl/train_investigation_labels.npy" \
--test_labels "data/calms21 taskl/test investigation_labels.npy"” \
--valid labels "data/calms21 taskl/val investigation labels.npy"” \
--input_type "list" \

--output_type "atom" \

--input_size 18 \

--output_size 1 \

--num_labels 1 \

--losstxn "bcelogits" \

--frontier_capacity 8 \

--max_num_children 10 \

--max_depth 5 \

--max_num_units 32 \

--min_num_units 16 \

--learning_rate 0.0001 \

--neural epochs 4 \

--symbolic_epochs 12 \

--class_weights "2.0"



Code Structure: NEAR

1 # Directory names to plot inside near code/results

2 run_names_to plot = ['investigation base enumeration sd 1 @e1’,

3 "investigation morlet enumeration sd 1 @e1']
a

5

runtime, f1 = parse runtime f1 from logs(run names to plot)
6
7 plot runtime f1(runtime, 1, run names to plot)
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I s u a’ IZe u ntl e VS ° investigation_morlet_enumeration
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Code Structure: NEAR

/
* Open-Ended Exploration

* Modifying Heuristic Architecture
* Different Search Algorithms
* Test on Other Behaviors

Input Trajectory
AR

[Sniff]



Inside code and data...

dsl.ipynb:
contains DSLs

‘— Table of contents

Q Neural Functions

Generic Library Functions
) Behavior Library Functions
0O Mice Feature Subsets

Morlet Filter
Test Morlet Filter

Starting DSL Dictionary

DSL with Morlet Filter

DSL with Neural Module

DSL with Asymmetric Morlet Filter

3 X

near.ipynb:
contains search algorithms

‘ ‘— Table of contents

Q

{x}

(-

NEAR Code
Utilities
Data Processing
Logging
Training
Evaluation
Program Graph
Search Algorithm
ASTAR
IDDFS

Enumeration

3 X



Potential Areas to Explore

Effect of search dsl.ipynb: near.ipynb:
hyperparameters modify DSLs modify search algorithms

lyes| python train.py \
--algorithm astar-near \
--exp_name investigation_base \

--trial 1\ 04\,@

--seed 1 \

--dsl str "default™ \ O‘\"O
--train_data "data/calms21_taskl/train_data.npy” \

--test_data "data/calms21_taskil/test data.npy” \ | AL, f* ‘
--valid data "data/calms21 taskl/val data.npy” \

--train_labels "data/calms21 taskl/train_investigation labels.npy" \ Speed
--test_labels "data/calms21 taskl/test investigation labels.npy™ \

--valid_labels "data/calms21_taskl/val_investigation_labels.npy" \

--input_type "list" \

--output_type "atom" \

v A“
--input_size 18 \ Az. [] . T 3 Az. foldl x (Azy. h")[ ]
(e 11] (o) ) |

--output_size 1 \

--num_labels 1 \

--lossfxn "bcelogits" \

--frontier_capacity 8 \

--max_num_children 10 \

--max_depth 5 \

--max_num_units 32 \ .
--min_num_units 16 \ Dlstance
--learning_rate 0.0001 \

--neural_epochs 4 \

--symbolic_epochs 12 \

--class_weights "2.0"



Code Walk-Through




Outline of Tutorial

What is Neurosymbolic Programming!?

Deep Dive: Neurosymbolic Programming for Science
Algorithmic Techniques

Deep Dive (continued)

Algorithmic Techniques (continued)

o U1 AW N —

Conclusion



Algorithmic Techniques (continued)



Recall: Searching over program structures

r D
" r- D

Az, [ ] \L. a [ Zemapxg® | [ Az foldlz (Azy. h) Library
o /I\v
[xlx map x f1

How to search over combinatorial space?



Recall: Informed Search
via Neural Relaxation Admissible Heuristic

Ax.mapx g | [ Mz foldlx (Azy. h*)[]]

>4

g g Fill hole with NN

If a large neural network
cannot fit this hole, then a
neurosymbolic completion
also cannot

Train parameters

Use training loss as admissible heuristic

Learning Differentiable Programs with Admissible Neural Heuristics, Ameesh Shah* Eric Zhan*, et al., NeurlIPS 2020



Library Learning

Components

(Based on slides by Kevin Ellis and the work in [Ellis et al. 20217 )



https://dl.acm.org/doi/10.1145/3453483.3454080

Library Learning

Initial Sample Problem: sort list

Primitives [9271]_’ [1279]
[38942]— [234809]
622385 [22356 8]

map
fold
if

cons

Ellis, Morales, Sable-Meyer; Solar-Lezama, Tenenbaum. Neurl|PS 2018.
Ellis,Wong, Nye, ..., Solar-Lezama, Tenenbaum. 2020.



Library Learning

Initial

Initi: Learned Library of Concepts Sample Problem: sort list
Primitives 9271 —~ [1279]
' [38942]— [23489]
: (622385 [223568]
map
fold concept_4

if \ (A(L P)(fold L nil

(A(z u) (if (P 2)
(cons z u) u))))

[filter]




Library Learning

Initial

Learned Library of Concepts
Primitives
ma.1p concept_13
fold SRS (A(L) (car (concept_4 L
o -\\\5,(A(L P) (fold L nil (A(y) (nil? (concept_4 L
(A(z u) (if (P z) A (z) (> zy))))N))
cons

(cons z u) u))))

[maximum]
> [filter]

Sample Problem: sort list
92711 — [12709]
[38942]— [234809]
622385 [22356 8]



Library Learning

Initial

Initic Learned Library of Concepts Sample Problem: sort list
Primitives 0271 [279]
: [38942]— [23489]
: [6223851> [223568]
map
fold concept_4 Concept_13
: (A(L P)(fold L nil
c;:zs\[(()\(z u) (1')f ()P))z)) ]_//(A(L) (Car (Concept_4 L
cons z u u -
s S (A(y) (nil? (concept 4 L
nter

\ (A (Z) (> 2¥))))))))

[maximum]




Initial

Initi Learned Library of Concepts Sample Problem: sort list
Primitives 0271~ [1279
: _/"-\)- —> 38942~ [23489]

mép/"- coneahili [622385 [22356 8]
fold Lol (A(L) (car (concept 4 L

if \ (ML P)(fold L nil (M(y) (nil? (concept_4 L concept_15

(A(z u) (if (P 2) A (z) (> zy)))))N))
cons (cons z u) u))))

(A (L N)(concept_13 (concept_4
[maximum] L (A (L)(> N (length(concept_4
LN zu))))))

[filter]

[nth largest element]

4



Library Learning

Initial Learned Library of Concepts Sample Problem: sort list
Primitives [9 27 1] . [1 27 9]
: [38942]— [234809]
ma;p Concentils F?22385}> [22 356 8]
fold concept 4

(A(z u) (if (P z) A (z) (> zy¥)))))))
cons (cons z u) u))))

[maximum]
> [filter]

concept_15

(A(L) (car (concept_4 L
S \EML P) (fold L nil (A(y) (nil? (concept_4 L \

(A (L N)(concept 13 (concept_i\
L (A (L)(> N (length(concept 4
L (A (u( z u))))))))) Y

[nth largest element]




Library Learning

P_Ini?i:al Learned Library of Concepts Sample Problem: sort list
rimitives [9 27 1] N [1 27 9]

: [38942]—- [23489]

. 622385 223568
map concept_13 [ g ]
fold S (A(L) (car (concept 4 L ¢ 15

. (AL P)(fold L nil (A(y) (nil? (concept 4 L concept_ : ) .
if \ Bz o) (57 (P 25 ANZ) Gz ) _Solutlonto sort list discovered
cons (cons z u) u)))) (A (L N)(concept_13 (concept_4 in learned language:

[maximum] L (A (L)Y(> N (Length(concept_4 N
> [filter] L v ez u)))) (map (A (n)

(concept_15 L (+ 1 n)))
[nth largest element] (range (length L)))



Library Learning

Initial Learned Library of Concepts Sample Problem: sort list

Primitives 9271~ [1279]
[38942]— [23489]
622385 [223568]

ma;p concept_13
fold SIElilEEEE = (M(L) (car (concept_4 L e
; (A(L P)(fold L nil (A(y) (nil? (concept_4 L concept_ : . .
if \ Ote 15 (1t P 2 AND) Gz VNN _Solutlonto sort list discovered
cons (cons z u) uw)))) (A (L N)(concept_13 (concept_4 in learned language:
maximum > ength(concept__
[ ] LA (LCNCQA h( 4 (map (n (n)
> . L (A >
[filter] A WGz u))) Foncent 15 L (+ 1 1))
[nth largest element] (range (length L)))

get Nth largest element,
whereNis 1,2, 3, ...

Solution rewritten in initial primitives:

(lambda (x) (map (lambda (y) (car (fold (fold x nil (lambda (z u) (i1f (gt? (+ y 1) (length (fold x
nil (lambda (v w) (1f (gt? =z v) (cons v w) w))))) (cons z u) u))) nil (lambda (a b) (1f (n1l?

(fold (fold x nil (lambda (¢ d) (1f (gt? (+ y 1) (length (fold x nil (lambda (e f) (if (gt? <c e)
(cons ¢ f) f))))) (cons ¢ d) d))) nil (lambda (g h) (i1f (gt? g a) (cons g h) h)))) (cons a b)
b))))) (range (length x))))



Library Learning

Initial Learned Library of Concepts Sample Problem: sort list
Primitives [9 27 1] . [1 27 9]
[38942]—~ [23489]
y 622385 223568
map concept_13 [ . ]
concept_4

fold (A(L) (car (concept 4 L
e \ (A(L P)(fold L nil (A(y) (nil? (concept 4 L concept_15
(A(z u) (if (P 2) \

(A(z) (> zy))))))))
cons (cons z u) u))))

(A (L N)(concept_13 (concept_4 in learned language:

[maximum] L (A (L)Y(> N (Length(concept_4
> . L (O N (map (A (n)
[filter] A (W zu)h))) (concept 15 L (+ 1 n)))
[nth largest element] (range (length L)))

get Nth largest element,
whereNis 1,2, 3, ...

* Induced sort program found in = [0min.

* Brute-force search without learned library would take = 1073 years

Solution to sort list discovered



Dreamcoder

* Wake: Solve problems by writing programs

* Sleep: Improve library and neural recognition model:
* Abstraction sleep: Improve library

* Dream sleep: Improve neural recognition model



Dreamcoder

List Processing Text Editing Regexes
Sum List Abbreviate Phone numbers
[1 23] —6 Allen gewell-—>A.N. (555) 867-5309
[4 6 81]— 17 Herb Simon —H.S. (650) 555-2368
Double Drop Last Three Currency

[1 2 3] >[2 4 6] shrdlu — shr $100.25

[4 5 1] — [8 10 2] shakey — sha $4.50

Block Towers Symbolic Regression Recursive

Programming

Filter Red
(AEEEE] — [HE]

[(ANEEEE] —» [NEEE] _,
e o 12, @ Oy

L & |
—
L& |
—
?-
——



Wake

Sleep: Abstraction Sleep: Dreaming




Wake

Library

AX) =+ X 1)
£2(z) =(fold cons

(cons z nil))\A

Search

Neurally-Guided

Recognition
model /
Task d
(7 2 3]1—1[4 3 8] —p» %:
®

(4 3 2]—1[3 4 5]

L

Programs for task:
(map A (fold A2 nil X))

Sleep: Abstraction

Po

argmax P[p|z, L] « P[z|p]P[p|L], for each task z € X
>

Q(p|z) is large

Sleep: Dreaming




Wake

Library
+ X 1)
(fold

Akx) =
f2(z) =

cons

Task
[7 2 3]—1[4 3 8]
[4 3 2]—1[3 4 5]

L

(cons z nil))\A

Programs for task:
(map f1 (fold A nil X))

Neurally-Guided

5 . Search
ecognition

model

1 —»

Sleep: Abstraction

(+ (car z) 1)

COQ\
+ 1 1

progs. for task 1:

progs. for task 2:
(cons (+ 1 1))

i

Refactoring Algorithm:
version spaces

v

new Library w/ (+ x 1):

\

max
p arefactoring of p,

L = argmaxP |L
g 2Rl

zeX

Plz|p|P[p|L]




Wake

Library

AKX = X 1)
£2(z) =(fold cons

Task

(4 3 2]—[3 4 5]

L

(cons z nil))\A

[7 2 3]—[4 3 8] —P»

Programs for task:
(map f1 (fold A nil X))

Neurally-Guided
Search

Recognition
model
)
)
®
®

Sleep: Abstraction

Sleep: Dreaming

progs. for task 1:

(+ (car z) 1)

cons
NN
1 1 1 car Z

Refactoring Algorithm:
version spaces

v

new Library w/ (+ x 1):

AN

progs. for task 2:
(cons (+ 1 1))

Fantasies Replays
Library progs. for task
£ g
3 3
=2 =1
™ ™
program program

Train recognition model

run
program _______p. task

Train Q(p|z) =~ P[p|z, L], where z ~ X (‘replay’) or z ~ L (‘fantasy’)




Example: LOGO Graphics

Input: Corpus of target shapes that we would like to learn how to draw

Input: Basic drawing language

move , for, *+, m, pen-up,...



Learned subroutines

Parametric drawing routines in library Higher-order drawing routine in library
Semicircle: Radial Symmetry:
Circles:
Spiral:

Greek Spiral:

S-Curves:

Polygons & Stars:




Language helps generation

The model is trained by sampling from the learned language
The language provides an inductive bias for generation

\/’\)7\‘
y VR o
/ . N
\\_ NooL
- o)

Initially dreams are very unstructured
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PR LS.
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A richer language leads to more structured dreams




Learning the language

fly draws

(/ 2m 3
fn8 Repea
/ and otares
at
: (A(x y) (fnl PP
(A(x y z)(for y (A(u) e (fne x) x y))
(get/set z ). e (f1e (/ e 2) ©
get/set (move © 2)))) - / _z)
n s:’::_’:,:-;s : T n j“ ‘Z \
2m f
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for X 4 /] J J
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o0
(move 1 2m)
)
€ Draws /
GO (for @ (A (y) Sl fnll —
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pen-up B 77._1\\\ (fné €)
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(move 1 0))

(fn8 5 ( (* € 2) » €)) (for 2 (A (x)
(fnl4d 2); (£fnl3 2)))
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(fnl0 (* (
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/ \
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Other Directions



Combining algorithmic building blocks

Gf
. my x<-1.13
s Hy,, = [2.4,.35] d
Gl A 62
2
dp <033 {ar=031
mp \A
Hpm, = [-2.0,—.09]

ms \

Hp, = [1.6,-.35]

[Inala et. al. ICLR 2020]

n



https://openreview.net/forum?id=S1l8oANFDH

Ensuring Correctness

Action a;

Requirement ¢

¥

Formal
Verifier

Policy

[Yang and Chaudhuri, 2022]

C. >

Plant
model

Learning goal:

argmax E; .
mell

S.t.mkEQ

New state S;, 4

b

% Y
o MdoTats g%ati gTats QR o
(0ata gt g7ats gati g¥ats gl @
oo —» out
O EOSEOSEOSX OO0
ORSOEROSERAOTD

* Differentiable loss quantifying the extent to which the policy satisfies the requirement

* Constructed by calls to a formal verifier from within the learning loop

* Gradients of this loss used to guide learning


https://arxiv.org/pdf/2203.07671.pdf

Interpretability

[Inala et al. Neurips 2020]

Attention based decentralized policy

—

state, obs
. Si95 .
Agent j »| Message policy
message
m/~t
state, obs attention
Si, 045 A a; .
Agent i Commur.ucanon combined Action policy
policy message
m; = ZC(,"[ .m’“'
]
Communication constraint: minimize mlaxZ,» 1[a;; > 0] + m‘axZ, 1[a;; > 0]

Y \ ,|,
Maximum incoming Maximum outgoing
degree degree

M RE NN
LKL
OOE

R 2 —> out
KB,
NG

R

U

in —» A —> out

Rule-based policy

30 Robots Formation

4.0
2.0
X ® x. L ]
% 2
0.0 ® e e oo
° o®
¢ » X o @
-2.0
-4.0
.20.0 -15.0 -10.0 -5.0 0.0 5.0 10.0 15.0  20.0
Rulel :: random ( filter ( agents in ))

0


https://proceedings.neurips.cc/paper/2020/hash/9d740bd0f36aaa312c8d504e28c42163-Abstract.html

/ Neurosymbolic Programs \




Neurosymbolic Program Synthesis

Program synthesis

Heuristic search M
Solver-based search
Deductive pruning

Version spaces

Machine learning

Stochastic gradient descent
Sampling-based optimization
Variational approximations

Learning to learn




Neurosymbolic learning isn’t new...

...but it’s a good time to push on it!

* Recent progress in symbolic reasoning and deep learning

* New algorithms that can scale

* Demand by domain experts



Understanding the World
Through Code Ax. -«’}i

An NSF funded Expeditions in
Computing Project

neurosymbolic.org



http://neurosymbolic.org/

