

Neurosymbolic Programming

Swarat Chaudhuri Jennifer J. Sun

Armando Solar-Lezama

Neurosymbolic Programming

Neurosymbolic Function
Representations
(Symbolic code +
neural networks)

Neurosymbolic Programming

Neurosymbolic Learning Algorithms

Neurosymbolic Programming

Neurosymbolic Programming. Chaudhuri, Ellis, Polozov, Singh, Solar-Lezama, Yue. Foundations and Trends in Programming Languages, 2021.

Swarat Chaudhuri
UT Austin
swarat@cs.utexas.edu

Oleksandr Polozov
Google
polozov@google.com

Armando Solar-Lezama
MIT
asolar@csail.mit.edu

Kevin Ellis
Cornell
kellis@cornell.edu

Rishabh Singh
Google
rising@google.com

Yisong Yue
Caltech

Outline of Tutorial

- I. What is Neurosymbolic Programming?
- 2. Deep Dive: Neurosymbolic Programming for Science
- 3. Algorithmic Techniques
- 4. Deep Dive (continued)
- 5. Algorithmic Techniques (continued)
- 6. Conclusion

What is Neurosymbolic Programming?

Ingredients for Machine Learning

Loss Function

Learning (Optimization)

Deep Neural Networks

Weaknesses of Deep Learning

Lack of domain knowledge →
Unreliable training, high sample complexity

Opaque inductive bias → **Brittle model**

Key Insight: Use Symbolic Knowledge

A.k.a. "Code" or "Programs"

Two Ideas

A. Neurosymbolic function representations

B. Neurosymbolic learning algorithms

A. Neurosymbolic Function Representations

Neurosymbolic Programs

Symbolic Programs

Interpretable

Verifiable

Structured domain knowledge

Data efficient

Neural Networks

Scalable algorithms

Flexible

Handles messy data

Easy to get started

Application: Control

state (s) reward

action

Goal: Control a car.

Symbolic code:

$$PID_{\langle i,s^*,k_P,k_I,k_D\rangle}(s) = k_P P(s-s^*) + k_I I(s-s) + \kappa_D D(s-s^*)$$

"If the car is aligned with

Environment

$$SwitchingPID(s) = \quad \textbf{if} \ (s[\texttt{TrackPos}] < 0.011 \ \textbf{and} \ s[\texttt{TrackPos}] > -0.011) \\ \quad \textbf{then} \ PID_{\langle \texttt{rpm}, 0.39, 3.54, 0.03, 53.39 \rangle}(s) \\ \quad \textbf{else} \ PID_{\langle \texttt{rpm}, 0.39, 3.54, 0.03, 53.39 \rangle}(s) \quad \text{"then accelerate,}$$

otherwise slow down"

Machine learning

Learning a controller.

- Collect data
 - For example, from exploration of the world or human demonstrations
- 2. Select a suitable model class (e.g., a category of neural networks)
- 3. Learn a function from the model class that maximizes reward.

Control with neurosymbolic programs

[Cheng et al., 2019]

Idea: Models are programs with neural and symbolic components

$$NS_{\lambda}(s) =$$

$$(1 - \lambda) \ SwitchingPID(s) + \lambda \ f_{\theta}(s)$$
where $0 \le \lambda \le 1$

Symbolic controller used as a "regularizer"

Neurosymbolic vs. Neural [Verma et al., 2019]

Neural Control with Continuous-Time Symbolic Models [Shi et al., 2019]

NNs to model residual dynamics

$$f(x) = Physics(x) + f_a(x)$$

 $\mathbf{f(x) = Physics(x) + f_a(x)}$ $\dot{\mathbf{p}} = \mathbf{v}, \qquad m\dot{\mathbf{v}} = m\mathbf{g} + R\mathbf{f}_u + \mathbf{f}_a$ $\dot{R} = RS(\boldsymbol{\omega}), \quad J\dot{\boldsymbol{\omega}} = J\boldsymbol{\omega} \times \boldsymbol{\omega} + \boldsymbol{\tau}_u + \boldsymbol{\tau}_a$

Symbolic

• Control:
$$\begin{cases} \mathbf{f}_u = [0,0,T]^\top \\ \boldsymbol{\tau}_u = [\tau_x,\tau_y,\tau_z]^\top \\ \begin{bmatrix} T \\ \tau_x \\ \tau_y \\ \tau_z \end{bmatrix} = \begin{bmatrix} c_T & c_T & c_T & c_T \\ 0 & c_T l_{\mathrm{arm}} & 0 & -c_T l_{\mathrm{arm}} \\ -c_T l_{\mathrm{arm}} & 0 & c_T l_{\mathrm{arm}} & 0 \\ -c_Q & c_Q & -c_Q & c_Q \end{bmatrix} \begin{bmatrix} n_1^2 \\ n_2^2 \\ n_3^2 \\ n_4^2 \end{bmatrix}$$

Symbolic

Concrete Instantiations

Boundary Conditions https://arxiv.org/abs/1811.08027

Dynamic Environments https://arxiv.org/abs/2205.06908

Multi-agent Interactions https://arxiv.org/abs/2003.02992

Neurosymbolic Programs in Al4Science

[Sun et al., 2022]

Goal: Quantify behavior from pose

Task Programming [Sun et al., 2021]

Step I: Define important attributes (similar to feature design)

τ trajectory

Task Programming

Step 2: Use to structure representation learning

Self-supervised Loss

$$\mathcal{L}(au)$$

Programmatically Supervised Loss

$$\mathcal{L}(\tau,\lambda(\tau))$$

Taxonomy of Neurosymbolic Programs

Additive composition [Cheng et al., 2019]

Symbolic-after-neural [Valkov et al., 2018]

Neural-after-symbolic [Sun et al., 2021]

Branching composition [Anderson et al., 2020]

B. Neurosymbolic Learning Algorithms

Learning as Symbolic Program Synthesis

[Ellis et al., 2021]

Interpretable morpho-phonological rules for human languages from very few examples

Algorithm synthesizes rules using solvers for Boolean satisfiability (SAT)

Used to learn rules for 70 datasets spanning 58 languages

Understanding Morpho-phonology

Neurosymbolic Program Synthesis

Program synthesis

Heuristic search

Solver-based search

Deductive pruning

Version spaces

Machine learning

Stochastic gradient descent

Sampling-based optimization

Variational approximations

Learning to learn

Neurosymbolic Program Synthesis

Domain-Specific Language ("Family of programs")

Program syntax defined as a grammar:

functions, capturing

prior knowledge

Program semantics implemented using an interpreter

$$\begin{split} & \textbf{if } (s[\texttt{TrackPos}] < 0.011 \textbf{ and } s[\texttt{TrackPos}] > -0.011) \\ & \textbf{then } PID_{\langle \texttt{rpm}, 0.45, 3.54, 0.03, 53.39 \rangle}(s) \\ & \textbf{else } PID_{\langle \texttt{rpm}, \textbf{0.39}, 3.54, 0.03, 53.39 \rangle}(s) \end{split}$$

Neurosymbolic Program Synthesis

$$\alpha(s)$$
 ::= $a \mid Op(\alpha_1(s), \dots, \alpha_k(s)) \mid \text{if } b \text{ then } \alpha_1(s) \text{ else } \alpha_2(s) \mid \oplus_{\theta}(\alpha_1(s), \dots, \alpha_k(s))$
 b ::= $\phi(s) \mid BOp(b_1, \dots, b_k)$

Domain Specific Language (DSL): "Family of programs"

Observations

Traditional neurosymbolic learning

- Fixed program structure lpha
 ightarrow train parameters $oldsymbol{ heta}$ via gradient descent
- Setting lpha as a neural network ightarrow standard deep learning
- Finding lpha is analogous to neural architecture search
 - Sometimes call lpha the "program architecture"
- Classic program synthesis focuses on α , with θ being very simple

```
 \begin{array}{lll} \textbf{Example} & \textbf{if} \ (s[\texttt{TrackPos}] < 0.011 \ \textbf{and} \ s[\texttt{TrackPos}] > -0.011) \\ \textbf{then} \ PID_{\langle \texttt{rpm}, 0.45, 3.54, 0.03, 53.39 \rangle}(s) \\ \textbf{else} \ PID_{\langle \texttt{rpm}, \textbf{0.39}, 3.54, 0.03, 53.39 \rangle}(s) \\ \end{array}
```

Taxonomy of Neurosymbolic Program Synthesis

Neural-Guided Search

Symbolically Guided DL

Distillation

Relaxation

$$in \rightarrow \lambda \rightarrow out$$

$$\downarrow \downarrow$$

$$in \rightarrow \lambda \stackrel{\text{def}}{\rightleftharpoons} \rightarrow out$$

Component Discovery

Goals
$$\Rightarrow$$
 λ \Rightarrow Components \Rightarrow λ

Neural-Guided Search [Devlin et al., 2017]

 Leverage the ability of NN to learn complex conditional distributions

 Network guides the search for programs that satisfy the goals

Symbolically Guided Deep Learning

[Sun et al., 2021]

- Symbolic knowledge can be used to guide the training of neural networks
 - When you want a network that is consistent with prior knowledge
 - When you want to improve data efficiency and better generalization

Distillation [Verma et al., 2019]

 Use the neural network as a starting point for program synthesis

- Replace neural components with symbolic ones
 - To improve interpretability and analyzability
 - To better generalize out of distribution
 - To ensure more predictable behavior

Relaxation [Shah et al., 2020]

in $\rightarrow \lambda$ \rightarrow out

- Replace symbolic components with neural proxies
 - Can help leverage the information in the symbolic component into a larger DL pipeline
 - Can help guide the search for symbolic components

Component Discovery [Ellis et al., 2020]

- Given a set of goals, we want to learn collections of components that can help us achieve those goals.
 - A form of abstraction where we want to identify the common structure in a set of goals and capture it symbolically into a set of useful components
 - Requires deep interaction between neural and symbolic reasoning

Neurosymbolic learning isn't new...

...but it's a good time to push on it!

- Recent progress in symbolic reasoning as well as deep learning
- New algorithms that can scale
- Demand by domain experts

Deep Dive:

Neurosymbolic Programming for Science

Behavior Analysis in Science

Observed Behavior

Neural Activity

Pharmacological Evaluation

Strain variations

Behavior Quantification

How to categorize behavior at each frame?

>100 annotation hours per day of recording

Dataset Overview

Code: Use neurosymbolic programming to learn relationship between pose and behavior

CalMS21 Dataset: https://arxiv.org/pdf/2104.02710.pdf

Behavioral Attributes / Features

Dataset:

- Raw trajectories
- Expert-annotated behaviors
- Behavioral attributes

Designed by domain experts for behavior analysis

Defining the space of programs

Feature Selections

Temporal Filters

Compositions

Subprogram 1

+

Subprogram 2

Program Examples

Program Learning

ID Conv Net

(Visualizing feature subset)

F1: 0.86 F1: 0.84

Program Visualizations

Code Structure

- Data Visualization
 - Plot trajectory samples
- Neural Network
 - Train a ID Conv Net
- Program Learning
 - Train program given structure
- Visualize Model Weights
- Open-Ended Exploration

Window5Avg(Or(AccelerationSelect, OverlapBboxesSelect))

Code Walk-Through

bit.ly/neurosym_tutorial

Outline of Tutorial

- I. What is Neurosymbolic Programming?
- 2. Deep Dive: Neurosymbolic Programming for Science
- 3. Algorithmic Techniques
- 4. Deep Dive (continued)
- 5. Algorithmic Techniques (continued)
- 6. Conclusion

Algorithmic Techniques

Neurosymbolic Programming

Neurosymbolic models + neurosymbolic learning algorithms

Learning as Bilevel Optimization

- $Loss(\alpha, \theta)$ quantifies fit to the dataset
- The structural cost $s(\alpha)$ penalizes complex program structures.

Learning Strategy

- Setting lpha as a neural network ightarrow standard deep learning
- Finding lpha is analogous to neural architecture search
 - Sometimes call α the "program architecture"
- Classic program synthesis focuses on α , with θ being very simple

Taxonomy of Neurosymbolic Program Synthesis

Neural-Guided Search

Symbolically Guided DL

Distillation

Relaxation

in
$$\rightarrow \lambda \rightarrow out$$

$$\downarrow \downarrow$$
in $\rightarrow \lambda \rightleftharpoons out$

Component Discovery

Neural-Guided Search

Enumerating programs

• Program enumeration is really a graph search problem

Enumerating programs

• Program enumeration is really a graph search problem

Enumerating programs

• Program enumeration is really a graph search problem

Algorithmic Idea: Type-Directed Enumeration

Top-Down Program Synthesis

Build up a search graph:

- The root is the empty program
- Internal nodes are partial program structures
- Sinks α are complete program structures
 - Come with costs $C(\alpha) = \min_{\theta} Loss(\alpha, \theta) + s(\alpha)$
- Edges model single derivation

Challenge: Too many programs!

Goal: Find path from the root to a rease cose sink

Type-Directed Search

• Pro: Can lead to useful pruning

• Con: Doesn't engage with the quantitative aspect of the problem.

	Task	Number of programs		
		size = 4	size = 5	size = 6
No types	Task 1	8182	110372	1318972
	Task 2	12333	179049	2278113
	Task 3	17834	278318	3727358
	Task 4	24182	422619	6474938
+ Types	Task 1	2	20	44
	Task 2	5	37	67
	Task 3	9	47	158
	Task 4	9	51	175

Source: Valkov et al., 2018

Learning to Search

Basic Idea

Idea: Learn weights on the search tree from a set of programming tasks.

Simplest Case: Deterministic Greedy

Runtime: greedily follow NN's most preferred predictions

Next Step: Beam Search

$$[w_5 = 0.25, w_6 = 0.75]$$

Runtime: keep track of top-K most likely sequences

• (e.g., top-K greedy)

Why Would This Work?

- NN is trained on many related synthesis tasks
 - (unlike Neural Relaxations)

NN has learned what makes a good completion

- Thus, can greedily follow NN's predictions
 - (similar to Language Models where NN can complete a prompt)

Learning Setup

E.g., programs and inputs are generated randomly

(Input, Output)

(grow the program one step at a time)

Devlin et al. RobustFill: Neural Program Learning Under Noisy I/O. ICML 2017.

Sequence Prediction

Why do children hate the big brown bear?

The big brown bear scares the children with its roar

I like artificial intelligence

我喜欢人工智能

GPT-3 is a deep neural network that uses the attention mechanism to predict the next word in a sentence.

It is trained on a corpus of over I billion words, and can generate text at character level accuracy. GPT-3's architecture consists of two main components...

Q&A

Translation

Completion

Neural Architectures for Sequence Prediction

Output program generated token by token

Devlin et al. RobustFill: Neural Program Learning Under Noisy I/O. ICML 2017.

arogram

Model prediction: Rep	lace_Space_Comma(GetSpan(Pro	per, 1, Start, Proper,	
4, End) Const(.)	GetToken_Proper1 EOS		
Jacob Ethan James	Jacob, Ethan, James, Alexander, Jacob, Ethan, James, Alexander, -		
Alexander Michael	Michael	Michael	
Elijah Daniel Aiden	Elijah, Daniel, Aiden, Matthew	Elijah, Daniel, Aiden, Matthew	
Matthew Lucas	Lucas	Lucas	
Jackson Oliver	Jackson, Oliver, Jayden, Chris	Jackson, Oliver, Jayden, Chris	
Jayden Chris Kevin	Kevin	Kevin	
Earth Fire Wind	Earth, Fire, Wind, Water. Sun	Earth, Fire, Wind, Water. Sun	
Water Sun			
Tom Mickey Minnie	Tom, Mickey, Minnie, Donald. Da	ffyom, Mickey, Minnie, Donald. Daffy	
Donald Daffy			
Jacob Mickey Minnie	Jacob, Mickey, Minnie, Donald.	Jacob, Mickey, Minnie, Donald.	
Donald Daffy	Daffy	Daffy	
Gabriel Ethan James	Gabriel, Ethan, James, Alexander Gabriel, Ethan, James, Alexander		
Alexander Michael	.Michael	Michael	
Rahul Daniel Aiden	Rahul, Daniel, Aiden, Matthew.	- Rahul, Daniel, Aiden, Matthew.	
Matthew Lucas	Lucas	Lucas	
Steph Oliver Jayden	Steph, Oliver, Jayden, Chris.Ke	Sitneph, Oliver, Jayden, Chris. Kevi	
Chris Kevin		_	
Pluto Fire Wind	Pluto, Fire, Wind, Water. Sun	Pluto, Fire, Wind, Water. Sun	
Water Sun			
Water Sun			

Input

True Output

Program's Output

Imitation vs. Reinforcement Learning

Imitation learning

Reinforcement learning

Synthesis with REPL

Learning to synthesize incrementally I

Learning to synthesize incrementally 2

Estimating the "Cost to Go"

- P^* = partial program (non-terminal nodes)
- $\mathbb{C}(P^*)$ = completions of P^* (reachable terminal nodes)

Heuristic Estimate:
$$d(P^*) \approx \min_{P \in \mathbb{C}(P^*)} \left[\Delta s(P, P^*) + \min_{\theta} \operatorname{Loss}(\alpha_P, \theta_P) \right]$$
Additional Structure Cost Training Loss

• If $d(P^*)$ is a lower bound it becomes an "admissible heuristic"

Guiding program search

So far

- Neural network policy to guide search
- Value function scores individual states

Guiding program search

Guiding program search

Learning with Neural Heuristics

Guiding Search with Neural Relaxations

Motivating Observation/Assumption: Functional Representational Power

"Neural Relaxation" Every neurosymbolic model can be (approximately) represented by some "large" neural model.

Implication (abstract form)

We can train an admissible heuristic!

"Neural Relaxation" Every neurosymbolic model can be (approximately) represented by some "large" neural model.

Informed Search (e.g., A*)

A* Search

- Priority queue of current leaf nodes:
 - Sorted by $s(P^*) + d(P^*)$
- Pop off top program P^*
 - If P^* is complete, terminate
 - Else, expand P^* , add child nodes to priority queue

Lower bounds "Cost to Go"

- Guarantee: if $d(P^*)$ is admissible, A^* will return optimal P
 - Tighter $d(P^*)$ prunes more aggressively
 - Uninformed $d(P^*)$ (e.g., always 0) => uninformed search

NEAR: Results

Order of magnitude speedup!

NEAR: Neural Admissible Relaxations

Summary

- Today, we saw two strategies for learning neurosymbolic programs
 - Type-directed enumeration, informed search via admissible neural heuristics
- Next: Deep Dive Continued
 - Code for enumeration & NEAR

Behavior Quantification

How to categorize behavior at each frame?

Code: Use neurosymbolic programming to learn relationship between pose and behavior

Code Structure: Enumeration

- Running Enumeration
 - Base DSL
 - Morlet Filter DSL
 - Neurosymbolic DSL
- Visualize Runtime vs.
 Classification Performance
- Implement Temporal Filter
- Open-Ended Exploration

```
!yes | python train.py \
--algorithm enumeration \
--exp name investigation base \
--trial 1 \
--seed 1 \
--dsl str "default" \
--train data "data/calms21 task1/train data.npy" \
--test_data "data/calms21_task1/test_data.npy" \
--valid data "data/calms21 task1/val data.npy" \
--train labels "data/calms21 task1/train investigation labels.npy" \
--test labels "data/calms21 task1/test investigation labels.npy" \
--valid labels "data/calms21 task1/val investigation labels.npy" \
--input type "list" \
--output type "atom" \
--input size 18 \
--output size 1 \
--num labels 1 \
--lossfxn "bcelogits" \
--learning rate 0.0001 \
--symbolic epochs 12 \
--max num programs 25 \
--class weights "2.0"
```

Code Structure: Enumeration

- Running Enumeration
 - Base DSL
 - Morlet Filter DSL
 - Neurosymbolic DSL
- Visualize Runtime vs.
 Classification Performance
- Implement Temporal Filter
- Open-Ended Exploration

Code Structure: Enumeration

- Running Enumeration
 - Base DSL
 - Morlet Filter DSL
 - Neurosymbolic DSL
- Visualize Runtime vs.
 Classification Performance
- Implement Temporal Filter
- Open-Ended Exploration

Code Structure: NEAR

- Running NEAR
 - Base DSL
 - Morlet Filter DSL
- Visualize Runtime vs.
 Classification Performance
- Open-Ended Exploration:
 - Modifying Heuristic Architecture
 - IDDFS Search
 - Test on Other Behaviors

```
!yes| python train.py \
--algorithm astar-near \
--exp name investigation base \
--trial 1 \
--seed 1 \
--dsl str "default" \
--train data "data/calms21 task1/train data.npy" \
--test data "data/calms21 task1/test data.npy" \
--valid data "data/calms21 task1/val data.npy" \
--train labels "data/calms21 task1/train investigation labels.npy" \
--test labels "data/calms21 task1/test investigation labels.npy" \
--valid labels "data/calms21 task1/val investigation labels.npy" \
--input type "list" \
--output type "atom" \
--input size 18 \
--output size 1 \
--num labels 1 \
--lossfxn "bcelogits" \
--frontier capacity 8 \
--max num children 10 \
--max_depth 5 \
--max num units 32 \
--min num units 16 \
--learning rate 0.0001 \
--neural epochs 4 \
--symbolic epochs 12 \
--class weights "2.0"
```

Code Structure: NEAR

- Running NEAR
 - Base DSL
 - Morlet Filter DSL
- Visualize Runtime vs.
 Classification Performance
- Open-Ended Exploration:
 - Modifying Heuristic Architecture
 - IDDFS Search
 - Test on Other Behaviors

Code Structure: NEAR

- Running NEAR
 - Base DSL
 - Morlet Filter DSL
- Visualize Runtime vs.
 Classification Performance
- Open-Ended Exploration
 - Modifying Heuristic Architecture
 - Different Search Algorithms
 - Test on Other Behaviors

Inside code_and_data...

dsl.ipynb: contains DSLs

near.ipynb: contains search algorithms

Potential Areas to Explore

Effect of search hyperparameters

```
!yes| python train.py \
--algorithm astar-near \
--exp_name investigation_base \
--trial 1 \
--seed 1 \
--dsl str "default" \
--train data "data/calms21 task1/train data.npy" \
--test data "data/calms21 task1/test data.npy" \
--valid data "data/calms21 task1/val data.npy" \
--train labels "data/calms21 task1/train investigation labels.npy" \
--test labels "data/calms21 task1/test investigation labels.npy" \
--valid labels "data/calms21 task1/val investigation labels.npy" \
--input type "list" \
--output type "atom" \
--input size 18 \
--output size 1 \
--num labels 1 \
--lossfxn "bcelogits" \
--frontier capacity 8 \
--max num children 10 \
--max depth 5 \
--max num units 32 \
--min num units 16 \
--learning rate 0.0001 \
--neural epochs 4 \
--symbolic epochs 12 \
--class weights "2.0"
```

dsl.ipynb: modify DSLs

near.ipynb: modify search algorithms

Speed

Distance

Code Walk-Through

bit.ly/neurosym_tutorial

Outline of Tutorial

- I. What is Neurosymbolic Programming?
- 2. Deep Dive: Neurosymbolic Programming for Science
- 3. Algorithmic Techniques
- 4. Deep Dive (continued)
- 5. Algorithmic Techniques (continued)
- 6. Conclusion

Algorithmic Techniques (continued)

Recall: Searching over program structures

How to search over combinatorial space?

Recall: Informed Search

via Neural Relaxation Admissible Heuristic

If a large neural network cannot fit this hole, then a neurosymbolic completion also cannot

Fill hole with NN

Train parameters

Use training loss as admissible heuristic

Goals
$$\Rightarrow$$
 λ \Rightarrow Components

(Based on slides by Kevin Ellis and the work in [Ellis et al. 2021])

Initial **Primitives** map fold i f cons >

```
Sample Problem: sort list
[9\ 2\ 7\ 1] \rightarrow [1\ 2\ 7\ 9]
[38942] \rightarrow [23489]
[622385] \rightarrow [223568]
```

Ellis, Morales, Sable-Meyer, Solar-Lezama, Tenenbaum. NeurIPS 2018. Ellis, Wong, Nye, ..., Solar-Lezama, Tenenbaum. 2020.

Sample Problem: sort list

Sample Problem: sort list

 $\begin{array}{ll}
[9\ 2\ 7\ 1] \rightarrow & [1\ 2\ 7\ 9] \\
[3\ 8\ 9\ 4\ 2] \rightarrow & [2\ 3\ 4\ 8\ 9] \\
[6\ 2\ 2\ 3\ 8\ 5] \rightarrow & [2\ 2\ 3\ 5\ 6\ 8]
\end{array}$

Sample Problem: sort list

 $\begin{array}{ll}
[9\ 2\ 7\ 1] \rightarrow & [1\ 2\ 7\ 9] \\
[3\ 8\ 9\ 4\ 2] \rightarrow & [2\ 3\ 4\ 8\ 9] \\
[6\ 2\ 2\ 3\ 8\ 5] \rightarrow & [2\ 2\ 3\ 5\ 6\ 8]
\end{array}$

. . .

Sample Problem: sort list

 $\begin{array}{lll}
[9 2 7 1] \rightarrow & [1 2 7 9] \\
[3 8 9 4 2] \rightarrow & [2 3 4 8 9] \\
[6 2 2 3 8 5] \rightarrow & [2 2 3 5 6 8]
\end{array}$

Solution to sort list discovered

Solution rewritten in initial primitives:

(lambda (x) (map (lambda (y) (car (fold (fold x nil (lambda (z u) (if (gt? (+ y 1) (length (fold x nil (lambda (v w) (if (gt? z v) (cons v w) w))))) (cons z u) u))) nil (lambda (a b) (if (nil? (fold (fold x nil (lambda (c d) (if (gt? (+ y 1) (length (fold x nil (lambda (e f) (if (gt? c e) (cons e f) f))))) (cons c d) d))) nil (lambda (g h) (if (gt? g a) (cons g h) h)))) (cons a b) b))))) (range (length x))))

Sample Problem: sort list

```
  \begin{array}{lll}
        [9\ 2\ 7\ 1] \rightarrow & [1\ 2\ 7\ 9] \\
        [3\ 8\ 9\ 4\ 2] \rightarrow & [2\ 3\ 4\ 8\ 9] \\
        [6\ 2\ 2\ 3\ 8\ 5] \rightarrow & [2\ 2\ 3\ 5\ 6\ 8]
  \end{array}
```

Solution to sort list discovered in learned language:

```
(map (λ (n)
  (concept_15 L (+ 1 n)))
  (range (length L)))
```

get Nth largest element, where N is 1, 2, 3, ...

Library Learning

- Induced sort program found in ≤ 10min.
- Brute-force search without learned library would take $\approx 10^{73}$ years

Dreamcoder

- Wake: Solve problems by writing programs
- Sleep: Improve library and neural recognition model:
 - Abstraction sleep: Improve library
 - Dream sleep: Improve neural recognition model

Dreamcoder

List Processing

Sum List

$$[1 \ 2 \ 3] \rightarrow 6$$

 $[4 \ 6 \ 8 \ 1] \rightarrow 17$

Double

$$[1 \ 2 \ 3] \rightarrow [2 \ 4 \ 6]$$

 $[4 \ 5 \ 1] \rightarrow [8 \ 10 \ 2]$

Text Editing

Abbreviate

Allen Newell \rightarrow A.N. Herb Simon \rightarrow H.S.

Drop Last Three

 $shrdlu \rightarrow shr$ $shakey \rightarrow sha$

Regexes

Phone numbers

(555) 867-5309(650) 555-2368

Currency

\$100.25 \$4.50

Physical Laws

Symbolic Regression

$$y = f(x)$$

Recursive **Programming**

Filter Red

Wake

Sleep: Abstraction

Wake

Sleep: Abstraction

Sleep: Dreaming

Train $Q(\rho|x) \approx P[\rho|x, L]$, where $x \sim X$ ('replay') or $x \sim L$ ('fantasy')

Example: LOGO Graphics

Input: Corpus of target shapes that we would like to learn how to draw

Input: Basic drawing language

move, for, *,+, π , pen-up,...

Learned subroutines

Parametric drawing routines in library Semicircle: Circles: 0 0 Spiral: Greek Spiral: S-Curves: Polygons & Stars:

Higher-order drawing routine in library

Language helps generation

The model is trained by sampling from the learned language The language provides an inductive bias for generation

Initially dreams are very unstructured

A richer language leads to more structured dreams

Learning the language

Other Directions

Combining algorithmic building blocks

Example:

[Inala et. al. ICLR 2020]

Ensuring Correctness

- Differentiable loss quantifying the extent to which the policy satisfies the requirement
- Constructed by calls to a formal verifier from within the learning loop
- Gradients of this loss used to guide learning

Interpretability

Inala et al. Neurips 2020

Attention based decentralized policy

Rule-based policy

Rule I:: random (filter (agents in))

Neurosymbolic Programs

Symbolic Programs

Interpretable

Verifiable

Structured domain knowledge

Data efficient

Neural Networks

Scalable algorithms

Flexible

Handles messy data

Easy to get started

Neurosymbolic Program Synthesis

Program synthesis

Heuristic search

Solver-based search

Deductive pruning

Version spaces

Machine learning

Stochastic gradient descent

Sampling-based optimization

Variational approximations

Learning to learn

Neurosymbolic learning isn't new...

...but it's a good time to push on it!

- Recent progress in symbolic reasoning and deep learning
- New algorithms that can scale
- Demand by domain experts

Understanding the World Through Code λx.

An NSF funded Expeditions in Computing Project

neurosymbolic.org