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ML Reproducibility Challenge:
 

 Encourage the publishing and 
sharing of scientific results that are 

reliable and reproducible.

Reproducibility study:
 

Verify the empirical results and 
claims in the paper by reproducing 

the computational experiments
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N. Mehrabi, M. Naveed, F. Morstatter, and A. Galstyan,
“Exacerbating Algorithmic Bias through Fairness Attacks” 
  AAAI, vol. 35, no. 10, pp. 8930-8938, May 2021
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Two families of poisoning attacks that inject malicious points into the models’ training sets 
and intentionally target the fairness of a classification model.

Influence Attack on 
Fairness (IAF)

Anchoring Attack

(An attacker can hence harm both 
accuracy and fairness simultaneously)
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Scope of reproducibility

Claim 1 Increasing the parameter λ results in stronger attacks against fairness.

The proposed IAF outperforms the attack of Koh et al. [1] in affecting both fairness metrics 
(SPD and EOD), on all three datasets.

The proposed IAF outperforms the attack of Solans et al. [2] in affecting both fairness 
metrics (SPD and EOD), on all three datasets.

Both random and non-random anchoring attacks (RAA and NRAA, respectively) outperform 
Koh et al. [1] in degrading the SPD and EOD of the classification model, on all three datasets.

Both random and non-random anchoring attacks (RAA and NRAA, respectively) outperform 
Solans et al. [2] in degrading the SPD and EOD of the classification model, on all three datasets.

Claim 2

Claim 3

Claim 4

Claim 5

[1] Stronger data poisoning attacks break data sanitization defenses
Koh et al, Mach Learn 111, 1–47 (2022)

[2] Poisoning Attacks on Algorithmic Fairness
Solans et al, ECML PKDD 2020

https://doi.org/10.1007/s10994-021-06119-y
https://doi.org/10.1007/978-3-030-67658-2_10
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Methodology
● 2 baselines: Koh et al., Solans et al.

● 3 datasets:  German, COMPAS, Drug Consumption

Setup
● Existing code implementation: Missing parts

● Model description: SVM with SH loss, L2 regularization

● Fairness metrics: SPD and EOD
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● Effect of λ on different metrics

● Comparison between novel attacks and the baselines

● Effects of different stopping metrics (beyond original paper)

Results
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(Test error) (SPD) (EOD)
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Anchoring attack vs baselines
● Claim 4: Both random and non-random anchoring attacks (RAA and NRAA, respectively) outperform Koh 

et al. in degrading the SPD and EOD of the classification model, on all three datasets.
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● Early stopping metric: accuracy or average fairness?



[Re] Exacerbating Algorithmic Bias through Fairness Attacks

Results beyond the original paper:

Effects of different stopping metrics

39

● Early stopping metric: accuracy or average fairness?



[Re] Exacerbating Algorithmic Bias through Fairness Attacks

Results beyond the original paper:

Effects of different stopping metrics

40

● Early stopping metric: accuracy or average fairness?



[Re] Exacerbating Algorithmic Bias through Fairness Attacks

Results beyond the original paper:

Effects of different stopping metrics

41

● Early stopping metric: accuracy or average fairness?



[Re] Exacerbating Algorithmic Bias through Fairness Attacks

Results beyond the original paper:

Effects of different stopping metrics

42

● Early stopping metric: accuracy or average fairness?



[Re] Exacerbating Algorithmic Bias through Fairness Attacks

Outline

Motivation

Methodology

Results

Discussion

43

Introduction



[Re] Exacerbating Algorithmic Bias through Fairness Attacks

44

Summary of the results
● Average the metrics over the ε values 
● Base our results on quantifiable measures instead of solely relying on visual inspection
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Better statistics could give clearer insights 

● Multiple runs with different seeds

Discussion

Results depend on the chosen stopping metric

● Claim 1 (supported) invariant to the stopping metric

● Claims 2-5 - dependence on the stopping metric

In general, the paper presents novel methods intuitively and clearly, but:

●  Missing implementation details of attacks

● Incomplete code, incompatible dependencies

● Data preprocessing not specified
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Conclusion

Reproduction required
many educated guesses

Obtained similar findings that 
support 3 out of 5 claims Too many missing details:

paper not reproducible
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