X

X

X
UNIVERSITY OF AMSTERDAM

56

[Re] Exacerbating Algorithmic Bias
through Fairness Attacks

Matteo Tafuro*, Andrea Lombardo*, Tin Hadzi Veljkovic, Lasse Becker-Czarnetzki

Date: December 2022 NeurlPS 2022 *Today’s presenters



utline

Motivation
Introduction
Methodology

Results

- XX e

Discussion

OF VS TERDAM [Re] Exacerbating Algorithmic Bias through Fairness Attacks



Outline

© otivation

X . . . . .
OF VS TERDAM [Re] Exacerbating Algorithmic Bias through Fairness Attacks



Motivation
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Encourage the publishing and
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reliable and reproducible.
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Abstract

Algorithmic fairness has attracted significant attention in re-
cent years, with many quantitative measures suggested for
characterizing the fairness of different machine learning algo-
rithms. Despite this interest, the robustness of those fairness
measures with respect to an intentional adversarial attack has
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appear unfair in order to depreciate their value and credibil-
ity. Some adversaries can even profit from such attacks by
biasing decisions for their benefit, e.g., in credit or loan appli-
cations. Thus, one should consider fairness when assessing
the robustness of ML systems.

Our contributions. In this work, we propose data poison-
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Introduction

Two families of poisoning attacks that inject malicious points into the models' training sets
and intentionally target the fairness of a classification model.
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Introduction

Two families of poisoning attacks that inject malicious points into the models' training sets
and intentionally target the fairness of a classification model.

Influence Attack on
Fairness (IAF)

Ladv (éa Dtest) — Eacc + )\efairness

(An attacker can hence harm both
accuracy and fairness simultaneously)
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Scope of reproducibility

Claim 1 Increasing the parameter A results in stronger attacks against fairness.
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Scope of reproducibility

Claim 2 The proposed IAF outperforms the attack of Koh et al. [7] in affecting both fairness metrics

- (SPD and EOD), on all three datasets.

Claim 3 The proposed IAF outperforms the attack of Solans et al. [2] in affecting both fairness
metrics (SPD and EOD), on all three datasets.

[1] Stronger data poisoning attacks break data sanitization defenses
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Scope of reproducibility

Claim 5 Both random and non-random anchoring attacks (RAA and NRAA, respectively) outperform

Both random and non-random anchoring attacks (RAA and NRAA, respectively) outperform
Koh et al. [7] in degrading the SPD and EOD of the classification model, on all three datasets.
- Solans et al. [2] in degrading the SPD and EOD of the classification model, on all three datasets.

[1] Stronger data poisoning attacks break data sanitization defenses
UNIVERSITY Koh et al, Mach Learn 111, 1-47 (2022)
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Results

e Effect of A on different metrics
e Comparison between novel attacks and the baselines

e Effects of different stopping metrics (beyond original paper)
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Effects of A on different metrics

e Claim 1: Larger values of A results in stronger attacks against fairness
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Effects of A on different metrics

e Claim 1: Larger values of A results in stronger attacks against fairness

German Dataset

1.0 A

0.8 1

0.6 1

Test Error

0.4 1 NMN

0.2 4
0-0 L] L A ' 1B T L] 1 ¥ 1 T
0.0 0.2 04 06 0.8 1.0 1.2 14 16 18 2.0
Lambda (A)
(Test error)
OF VS TERDAM [Re] Exacerbating Algorithmic Bias through Fairness Attacks

24



Effects of A on different metrics

e Claim 1: Larger values of A results in stronger attacks against fairness

German Dataset German Dataset

—%— € =0.0 —o— £=0.5 —%— £=0.0 —o— £=0.5
- £=0.1 —~v— £€=1.0 —a— £=0.1 —~V £€=1.0

o
5

1.0 A — 1.0 A
)
&)
3]

5 08 B E) 0.8 n
5 8

n 0.6 2 0.6 -
Q@ o
(a1

0.4 4 NMW’M‘"H -S 0.4 4
17
* e

0.2 4 S 0.2
n

0-0 A ] I ' I I I ! ' 1 1 0.0 I ' | ! ' 1 ' I 1 ' 1
0.0 0.2 04 06 08 10 1.2 14 16 1.8 2.0 00 0.2 04 06 08 10 1.2 14 16 1.8 2.0
Lambda (A) Lambda (A)
(Test error) (SPD)
OF VS TERDAM [Re] Exacerbating Algorithmic Bias through Fairness Attacks

25



Effects of A on different metrics

e Claim 1: Larger values of A result in stronger attacks against fairness

German Dataset German Dataset German Dataset
% £=00 —w— £=05 & £=00 —w— £=05 'Co; 4% €=00 —w— £=0.5
-a— £=0.1 —~v £€=1.0 8 —a— £=0.1 —~v £€=1.0 — -a— £=0.1 —~v— £€=1.0
Q- )
1.0 - Z1.01 Y1.0-
v et
2 v
o -
. 0.8 1 o 0.8 1 A 0.8 -
= = >
L (- *EJ
n 0.6 4 2 0.6 A 2 0.6
Q — —
= © o
o Q.
—_— Q
0.4 - N_W.WW 8 0.4 - O 0.4 4
= ©
' - >
0.2 2 0.2 1 = 0.2 1
4 :
S‘ ¢
0-0 ] L ] ] | ] | ! ' || 1 0.0 1 ' | 1 ' || ' | 1 ' 1 0.0 || | V 1 | | || ) 1 1 |
0.0 0.2 04 06 0.8 1.0 1.2 14 16 1.8 2.0 0.0 0.2 04 0.6 0.8 1.0 1.2 14 16 1.8 2.0 0.0 0.2 04 0.6 0.8 1.0 1.2 14 16 1.8 2.0
Lambda (A) Lambda (A) Lambda (A)
(Test error) (SPD) (EOD)
OF VS TERDAM [Re] Exacerbating Algorithmic Bias through Fairness Attacks

20



Effects of A on different metrics

e Claim 1: Larger values of A results in stronger attacks against fairness

German Dataset German Dataset German Dataset
% £€=00 —e— £=05 % £=00 —— £=05 'g % £=00 —w— £=0.5
—a— £=0.1 —~v— £ =1.0 o) —a— £=0.1 —v £€=1.0 - -a— £=0.1 —~v— £€=1.0
Q. )
1.0 - £1.0- Y 1.0-
Q Q
&) —
c Q
O =
v 0.8 - o 0.8 - A 0.8 -
° = >
L (- *E-‘
» 0.6 - 2 0.6 A 2 0.6 -
Q — —
= © o
o Q.
—_— Q
0.4 1 NW\.,._. UGS Ly
= °
* - P
0.2 1 2 0.2 1 = 0.2 -
(V) (o}
-
S‘ *
0-0 L | ] ] | ] | ) ) 1 1 0.0 1 ' 1 ] ) 1 ] | | ' || 0.0 || ] ) 1 | | | ) 1 1 |
0.0 0.2 04 06 0.8 1.0 1.2 14 16 1.8 2.0 0.0 0.2 04 0.6 0.8 1.0 1.2 14 16 1.8 2.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 14 16 1.8 2.0
Lambda (A) Lambda (A) Lambda (A)
(Test error) (SPD) (EOD)
OF VS TERDAM [Re] Exacerbating Algorithmic Bias through Fairness Attacks

27



Influence attack vs baselines

e Claim 2: The proposed IAF outperforms the attack of Koh et al. in affecting both fairness metrics
(SPD and EOD), on all three datasets.
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Anchoring attack vs baselines

e Claim 4: Both random and non-random anchoring attacks (RAA and NRAA, respectively) outperform Koh
et al. in degrading the SPD and EOD of the classification model, on all three datasets.
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Results beyond the original paper:

Effects of different stopping metrics

o Early stopping metric: accuracy or average fairness?
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Results beyond the original paper:

Effects of different stopping metrics

o Early stopping metric: accuracy or average fairness?

German dataset (Solans attack)

—— Test accuracy

—— Average fairness

------ Minimum accuracy
------ Maximum avg fairness

o N L
(00] o NJ
1 1 ]

=
L
1

Accuracy/fairness metrics
(&
(0))

Accuracy/fairness metrics

Drug dataset (IAF attack)

-]
o
1

=
00]
1

=
(0))]
1

©
B
1

—— Test accuracy
—— Average fairness

Value German Drug
(Solans) (IAF)

Min. test accuracy 0.465 0.506

Avg. .fa1rness at the point 0.999 0.9

of min. accuracy

Actual max. average 0619 1 000

fairness

0.2 | L7y e Minimum accuracy
A R e Maximum avg fairness
0.0 r 0.0 1= . ‘ —— . .
0 20 40 60 80 0 10 20 30 40 50
Epoch Epoch
OF VS TERDAM [Re] Exacerbating Algorithmic Bias through Fairness Attacks

41



Results beyond the original paper:

Effects of different stopping metrics

o Early stopping metric: accuracy or average fairness?

Avg. fairness at the point

. 0.229 0.822
of min. accuracy

Actual max. average

. 0.619 1.000
fairness
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Summary of the results

e Average the metrics over the € values

e Base our results on quantifiable measures instead of solely relying on visual inspection

German Dataset

Compas Dataset

Drug Dataset

Attack

IAF
NRAA
RAA
Koh
Solans

Test error

SPD

EOD

(Stopping metric: Fairness/ Accuracy)

0.40/0.47
0.26/0.26
0.27/0.28
0.27/0.61
0.40/0.48

0.84/0.68
0.26/0.25
0.24/0.17
0.17/0.08
0.65/0.44

0.88/0.74
0.36/0.33
0.36/0.19
0.13/0.12
0.49/0.16

Test Error

SPD

EOD

(Stopping metric: Fairness / Accuracy)

0.46/0.47
0.41/0.42
0.47/0.47
0.45/0.53
0.44/0.45

0.83/0.75
0.59/0.59
0.84/0.73
0.81/0.46
0.76/0.73

0.87/0.77
0.64/0.64
0.87/0.75
0.85/0.48
0.83/0.78

Test error

SPD

EOD

(Stopping metric: Fairness/ Accuracy)

0.43/0.45
0.39/0.39
0.42/0.44
0.40/0.56
0.40/0.56

0.89/0.75
0.53/0.53
0.66/0.55
0.56/0.26
0.53/0.28

0.90/0.76
0.53/0.53
0.68/0.57
0.56/0.29
0.55/0.32
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m Better statistics could give clearer insights

e Multiple runs with different seeds
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Discussion

m Better statistics could give clearer insights

e Multiple runs with different seeds

Results depend on the chosen stopping metric
e Claim 1 (supported) invariant to the stopping metric

e Claims 2-5 - dependence on the stopping metric
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Discussion

m Better statistics could give clearer insights

e Multiple runs with different seeds

Results depend on the chosen stopping metric
e Claim 1 (supported) invariant to the stopping metric

e Claims 2-5 - dependence on the stopping metric

In general, the paper presents novel methods intuitively and clearly, but:

e Missing implementation details of attacks
e Incomplete code, incompatible dependencies

e Data preprocessing not specified
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Conclusion

Reproduction required Obtained similar findings that
many educated guesses support 3 out of 5 claims
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Conclusion

Reproduction required Obtained similar findings that
many educated guesses support 3 out of 5 claims Too many missing details:
paper not reproducible
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Thank you!

Matteo Tafuro*, Andrea Lombardo*, Tin Hadzi Veljkovic, Lasse Becker-Czarnetzki
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