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Introduction
• Graphs:

• Graph signals:

• Graph (Hilbert) space:

with 

• Wavelet systems on R:  
– Dilations and translations of localized functions (wavelets) 

– Multiscale property and filter bank association (fast algorithms)

– Excellent for Euclidean data (signals, images, videos, etc.)

• Question: How to construction wavelet-like systems on graphs for GSP? 



Introduction
• Question: How to construction wavelet-like systems on graphs for GSP? 

• Answer: via localized kernel on graph.

• Orthogonal eigen-pairs for           (e.g., from graph Laplacian)

• Localized kernel:

• Coarse-grained chain (multiscale through clustering)



Framelets on Graphs (Undecimated Systems)
• Ingredients from R: 

– framelet system

– filter bank 

– refinement structure:

• UFS (Undecimated framelet systems on graph, 𝒢j≡ 𝒢):



Framelets on Graphs (Decimated Systems)
• Ingredients from R: 

– framelet system

– filter bank 

– refinement structure:

• DFS (Decimated framelet systems on graph, 𝒢j different):



Framelets on Graphs
• Characterization Theorems for decimated Tight framelet system: 

– In terms of

– In terms of filter bank 

• Construction:
– Graph clustering algorithms for the coarse-grained chain (multi-scale)

– Orthogonal eigen-pairs through graph Laplacian and Gram-Schmidt orthogonalization

– Careful design of filter banks so that 



Fast G-Framelet Transforms (FGT)
• Ingredients: 

– PR filter banks

– Discrete Fourier transforms (DFT and adjoint DFT) on graphs:

– Discrete convolution, down- and up-sampling operators on graphs



Fast G-Framelet Transforms (FGT)
• Ingredients: 

– PR filter banks

– Discrete Fourier transforms (DFT and adjoint DFT) on graphs

– Discrete convolution, down- and up-sampling operators on graphs

• Multilevel G-framelet decomposition and reconstruction (FGT):



Graph Signal Representation via FGT
• Multiscale Representation



GNNs via FGT
• FGConv (framelet graph convolution): 

– g: trained filter 

– f: graph signal.

– V, W: FGT decomposition and reconstruction operators

• GNN architecture via FGConv: 



GNNs via FGT
• Graph Data Sets and Classification



• Graph signal processing (GSP), machine learning (ML), deep learning (DL), geometric deep
learning (GDL), and graph neural networks (GNNs) deal with common graph structure data.

• Wavelet-like systems on graphs play an important role in the above areas like the
wavelet/framelet systems on Euclidean spaces.

• In terms of the localized kernel method for defining “dilation” and “translation”, we can
construct decimated and undecimated framelets on graphs based on coarse-grained chains
and orthogonal eigen-pairs.

• Fast G-framelet transforms (FGT) are established with filter bank association

• Applications of FGT in graph signal representation (Minnesota road network) are presented.

• FGT can be used to define graph convolution (FGConv) for graph neural networks (GNNs).
We build a GNN with the FGConv-FGConv-SumPool-MLP architecture.

• Applications of our GNNs in graph classification demonstrate state-of-the-art performance.

Summary
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