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Overview

• Problem: learning a Bayesian network’s DAG from data.

• Question: can a probabilistic discrete backpropagation
approach be used?

• Backprop methods.

• Architecture: DAG-DB.

• Experiments and results.

• Conclusion and future work.
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Problem: learning a DAG from data (1)
• Recall the problem of structure identification: learning a

Bayesian network’s directed acyclic graph (DAG) from data
it has generated.

Figure. Example of Bayesian network, with d = 5 nodes.[1]

• Given data X = (xn,A, ...,xn,E)
N
n=1 ∈ RN×d from a hidden

d-node DAG D, make prediction Dpred.

[1]Adapted from Sahani, UCL (2021).
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Problem: learning a DAG from data (2)
• Existing approaches to the problem can mainly be divided

between combinatoric, continuous and Bayesian.

• Differences include representation of DAG edges in core
calculations, and whether gradient descent (GD) is used.

Approach DAG edges GD? Examples

Combinatoric Binary No PC-Stable[1], FGES[2]

Continuous Float Yes NOTEARS[3], GOLEM[4]

Bayesian Binary Yes DiBS[5], DAG-GFlowNet[6]

Probabilistic Binary Yes DAG-DB presented today

[1]Colombo & Maathuis. Order-independent constraint-based causal structure learning. (2014)
[2]Ramsey, Glymour, Sanchez-Romero & Glymour. A million variables and more... . (2017)
[3]Zheng, Aragam, Ravikumar & Xing. DAGs with NO TEARS.... (2018)
[4]Ng, Ghassami & Zhang. On the Role of Sparsity and DAG Constraints for Learning Linear DAGs. (2020)
[5]Lorch, Rothfuss, Schölkopf & Krause. DiBS: Differentiable Bayesian Structure Learning. (2021)
[6]Dele, Góis, Emezue, Rankawat, Lacoste-Julien, Bauer & Bengio. Bayesian Structure Learning with Generative

Flow Networks. (2022)
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Question: probabilistic approach? (1)

Underlying approach:
• For data point x , predict value at a ‘child’ node from its

‘parents’.

Figure. Example of Bayesian network.[1]

• E.g, predict xD from xB and xC.

[1]Adapted from Sahani, UCL (2021).
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Question: probabilistic approach? (2)
Framework:

• Directed graph. With X ∈ RN×d , looking for graph on d
nodes. Let Z be d × d binary adjacency matrix for a
directed graph.

• Distribution. A float matrix Θ (same shape as Z )
parametrizes an ExpFam distribution,

p(Z ;Θ) = exp (⟨Z ,Θ⟩ − A(Θ)) .

• For sampling, use ‘Perturb-&-MAP’[1] to get S samples.
For each sample Z (s), take the most probable value of Z
given parameter Θ plus noise:

Z (s) = MAP(Θ+ϵ(s)) with ϵ(s) ∼ Logistic(0,1), s = 1, ...,S.

[1]Papandreou & Yuille. Perturb-and-MAP random fields: Using discrete optimization to learn and sample from
energy models. (2011)
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Backprop methods (1)

To learn Θ, need a way to backpropagate from Z to Θ.
Backprop methods which keep Z binary include:

• Straight-Through Estimation (STE).[1] Very simple.

• Score-Function Estimation (SFE). Aka REINFORCE.

• Blackbox Estimation (BBE). Not probabilistic.

• Implicit Maximum Likelihood Estimation (I-MLE).[2]

Taking advantage p(Z ;Θ) ∈ ExpFam.

[1]Hinton, Srivastava & Swersky. Neural networks for machine learning. (2012); Bengio, Léonard & Courville.
Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation. (2013)

[2]Niepert, Minervini & Franceschi. Implicit MLE: Backpropagating Through Discrete Exponential Family
Distributions. (2021)
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Backprop methods (2, STE)

• For backward pass, with average loss (plus regularizers) L,
Straight-Through Estimation (STE), approximates gradient
of L w.r.t. Θ as

∂L
∂Θ

∝
S∑

s=1

∂L
∂Z (s) .
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Backprop methods (3, I-MLE)

• Or, for backward pass with Implicit Maximum Likelihood
(I-MLE), perturb Θ using each sample Z (s),

Θ̃
(s)

= Θ− λ
∂L
∂Z (s) .

• Use noise values from sampling ϵ(s) to set

Z̃
(s)

= MAP(Θ̃
(s)

+ ϵ(s)).

• Approximate gradient of L w.r.t. Θ as

∂L
∂Θ

≈ 1
λS

S∑
s=1

[
Z (s) − Z̃

(s)
]
.
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Architecture
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Figure. DAG-DB, including learnable parameters and loss calculation.

• x ⋄ Z ensures only ‘parents’ influence predictions for ‘children’.
• fB is a very simple neural net: linear no bias.
• r is regularizer: NOTEARS-like regularizer pushing Z towards

being a DAG, plus sparsity regularizer.
• Depending on compute and size of problem, Z is transformed

into a DAG Dpred by a maximum DAG algorithm g in training or
only at evaluation.
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Experiments (1, synthetic data)
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graph_type = ER2 | d = 30

ER2: linear Gaussian additive
noise model on random
(Erdös-Rényi) graphs with d
nodes, and expected number of
edges is 2d . In this example,
d = 30 nodes.

Results on synthetic data showing
a normalised class structural
Hamming distance nSHDc from
the true DAG.

Shows two DAG-DB methods
STE 84 and IMLE None,
compared with continuous
(GOLEM, NOTEARS) and
combinatoric (FGES, PC)
methods.
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Experiments (2, real data)

Model SHDc precc

IMLE None mean 12.7 0.869
median 13 1.000

GOLEM 11 1.000
NOTEARS 11 0.467
FGES 11 0.750
PC 11 0.750

Tests on the
Sachs cellular
biochemistry
dataset.1

Best metric
scores are in
bold. SHDc is
un-normalised;
precc is a
precision
metric.

1Sachs, Perez, Pe’er,
Lauffenburger & Nolan.
Causal protein-signaling
networks derived from
multiparameter single-cell
data. (2005)
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Conclusion and future work

Take home
• Using discrete probabilistic backpropagation, DAG-DB

performs competitively at structure identification, often
better than combinatoric methods, though not as well as
continuous approaches.

• May be easier than many other DAG identification methods
to integrate with other neural nets.

• Extend to more types of Bayesian network: non-Gaussian,
non-linear, discrete-valued, with interventions.

• What if no ‘gold’ DAG, e.g. we generate a latent DAG
optimised to achieve some goal?

Thank you!
andrew.wren@ntlworld.com arXiv:2210.15353
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