Learning Discrete Directed Acyclic Graphs via Backpropagation

Andrew J. Wren Pasquale Minervini^۳ Luca Franceschi^{II} Valentina Zantedeschi^{× ۳} andrew.wren@ntlworld.com arXiv:2210.15353

Andrew J. Wren is very grateful to his co-authors who supervised him in the University College London MSc Machine Learning thesis project from which this paper derives.

 $^{\circ \gamma}$ University College London $^{\Omega}$ University of Edinburgh $^{\mathfrak{N}_{i}}$ Inria London II Amazon Web Services (work done while at UCL, and prior to joining Amazon) \checkmark ServiceNow

- Problem: learning a Bayesian network's DAG from data.
- Question: can a probabilistic discrete backpropagation approach be used?
- Backprop methods.
- Architecture: DAG-DB.
- Experiments and results.
- Conclusion and future work.

Problem: learning a DAG from data (1)

• Recall the problem of structure identification: learning a Bayesian network's directed acyclic graph (DAG) from data it has generated.

P(A, B, C, D, E) = P(A)P(B)P(C|A, B)P(D|B, C)P(E|C, D)

Figure. Example of Bayesian network, with d = 5 nodes.^[1]

 Given data X = (x_{n,A},..., x_{n,E})^N_{n=1} ∈ ℝ^{N×d} from a hidden d-node DAG D, make prediction D_{pred}.

^[1]Adapted from Sahani, UCL (2021).

Problem: learning a DAG from data (2)

 Differences include representation of DAG edges in core calculations, and whether gradient descent (GD) is used.

Approach	DAG edges	GD?	Examples
Combinatoric	Binary	No	PC-Stable ^[1] , FGES ^[2]
Continuous	Float	Yes	NOTEARS ^[3] , GOLEM ^[4]
Bayesian	Binary	Yes	DiBS ^[5] , DAG-GFlowNet ^[6]
Probabilistic	Binary	Yes	DAG-DB presented today

^[1]Colombo & Maathuis. Order-independent constraint-based causal structure learning. (2014)

^[2]Ramsey, Glymour, Sanchez-Romero & Glymour. A million variables and more... . (2017)

^[3]Zheng, Aragam, Ravikumar & Xing. *DAGs with NO TEARS....* (2018)

^[4]Ng, Ghassami & Zhang. On the Role of Sparsity and DAG Constraints for Learning Linear DAGs. (2020)

^[5]Lorch, Rothfuss, Schölkopf & Krause. DiBS: Differentiable Bayesian Structure Learning. (2021)

[6] Dele, Góis, Emezue, Rankawat, Lacoste-Julien, Bauer & Bengio. Bayesian Structure Learning with Generative Flow Networks. (2022)

Question: probabilistic approach? (1)

Underlying approach:

• For data point **x**, predict value at a 'child' node from its 'parents'.

P(A, B, C, D, E) = P(A)P(B)P(C|A, B)P(D|B, C)P(E|C, D)

Figure. Example of Bayesian network.[1]

• E.g, predict $\boldsymbol{x}_{\rm D}$ from $\boldsymbol{x}_{\rm B}$ and $\boldsymbol{x}_{\rm C}$.

^[1]Adapted from Sahani, UCL (2021).

â

Question: probabilistic approach? (2)

Framework:

- Directed graph. With X ∈ ℝ^{N×d}, looking for graph on d nodes. Let Z be d × d binary adjacency matrix for a directed graph.
- Distribution. A *float* matrix Θ (same shape as Z) parametrizes an ExpFam distribution,

$$p(\boldsymbol{Z}; \boldsymbol{\Theta}) = \exp\left(\langle \boldsymbol{Z}, \boldsymbol{\Theta}
angle - \mathsf{A}(\boldsymbol{\Theta})
ight).$$

For sampling, use 'Perturb-&-MAP'^[1] to get S samples.
 For each sample Z^(s), take the most probable value of Z given parameter Θ plus noise:

$$oldsymbol{Z}^{(oldsymbol{s})} = \mathsf{MAP}(oldsymbol{\Theta} + \epsilon^{(oldsymbol{s})}) ext{ with } \epsilon^{(oldsymbol{s})} \sim \mathsf{Logistic}(0,1), \quad oldsymbol{s} = 1,...,oldsymbol{S}.$$

To learn Θ , need a way to backpropagate from Z to Θ . Backprop methods which keep Z binary include:

- Straight-Through Estimation (STE).^[1] Very simple.
- Score-Function Estimation (SFE). Aka REINFORCE.
- Blackbox Estimation (BBE). Not probabilistic.
- Implicit Maximum Likelihood Estimation (I-MLE).^[2] Taking advantage p(Z; Θ) ∈ ExpFam.

^[1]Hinton, Srivastava & Swersky. *Neural networks for machine learning.* (2012); Bengio, Léonard & Courville. Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation. (2013)

^[2]Niepert, Minervini & Franceschi. Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions. (2021)

• For backward pass, with average loss (plus regularizers) L, Straight-Through Estimation (STE), approximates gradient of L w.r.t. Θ as

$$\frac{\partial L}{\partial \boldsymbol{\Theta}} \propto \sum_{s=1}^{S} \frac{\partial L}{\partial \boldsymbol{Z}^{(s)}}.$$

Backprop methods (3, I-MLE)

 Or, for backward pass with Implicit Maximum Likelihood (I-MLE), perturb Θ using each sample Z^(s),

$$\widetilde{\boldsymbol{\Theta}}^{(s)} = \boldsymbol{\Theta} - \lambda \frac{\partial L}{\partial \boldsymbol{Z}^{(s)}}.$$

• Use noise values from sampling $\epsilon^{(s)}$ to set

$$\widetilde{\mathbf{Z}}^{(s)} = \mathsf{MAP}(\widetilde{\mathbf{\Theta}}^{(s)} + \epsilon^{(s)}).$$

Approximate gradient of L w.r.t. Θ as

$$\frac{\partial L}{\partial \boldsymbol{\Theta}} \approx \frac{1}{\lambda S} \sum_{s=1}^{S} \left[\boldsymbol{Z}^{(s)} - \widetilde{\boldsymbol{Z}}^{(s)} \right]$$

٠

ŵ

Architecture

Figure. DAG-DB, including learnable parameters and loss calculation.

- *x* ◊ *Z* ensures only 'parents' influence predictions for 'children'.
- *f_B* is a very simple neural net: linear no bias.
- *r* is regularizer: NOTEARS-like regularizer pushing *Z* towards being a DAG, plus sparsity regularizer.
- Depending on compute and size of problem, *Z* is transformed into a DAG D_{pred} by a maximum DAG algorithm *g* in training or only at evaluation.

Experiments (1, synthetic data)

ER2: linear Gaussian additive noise model on random (Erdös-Rényi) graphs with *d* nodes, and expected number of edges is 2*d*. In this example, d = 30 nodes.

Results on synthetic data showing a normalised class **structural Hamming distance** nSHD_c from the true DAG.

Shows two DAG-DB methods STE_84 and IMLE_None, compared with continuous (GOLEM, NOTEARS) and combinatoric (FGES, PC) methods.

	Ι	6	

Model		SHD_c	prec _c
IMLE_None	mean modian	12.7	0.869
	median	15	1.000
GOLEM		11	1.000
NOTEARS		11	0.467
FGES		11	0.750
PC		11	0.750

Tests on the Sachs cellular biochemistry dataset.¹ Best metric scores are in bold. SHD_c is un-normalised; prec_c is a **precision** metric.

¹Sachs, Perez, Pe'er, Lauffenburger & Nolan. *Causal protein-signaling networks derived from multiparameter single-cell data.* (2005)

Take home

- Using discrete probabilistic backpropagation, DAG-DB performs competitively at structure identification, often better than combinatoric methods, though not as well as continuous approaches.
- May be easier than many other DAG identification methods to integrate with other neural nets.
- Extend to more types of Bayesian network: non-Gaussian, non-linear, discrete-valued, with interventions.
- What if no 'gold' DAG, e.g. we generate a latent DAG optimised to achieve some goal?

Thank you!

andrew.wren@ntlworld.com

arXiv:2210.15353