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ML algorithms in the hiring process

« Increasing use of ML algorithms in hiring for greater efficiency, less « ML algorithms performance
human bias, and better quality of new hires

 Legal concerns about ML-induced discrimination against minority in
algorithmic hiring processes, against Title VII, Affirmative Action and the

Performance of ML algorithms Human-AlI collaboration during hiring

Each decision model has its own benefit:
« Human hiring managers use their past experience and intuition that are
not available to algorithms

« ML algorithms purely makes data-driven decisions using past employee
total # of predictions data
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- ML algorithms fails to mimic human decision makers - Subjective evaluation of a candidate given past hires
- Mitigate humans’ implicit bias by slowing down the process

Human decision vs. Machine decision » Provides a reference for hiring standardization among hiring managers
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» To understand why algorithms fail, two-fold Blinder-Oaxaca
decomposition was used comparing the characteristics of Human and ML
decisions across protected and unprotected groups on Hire Again

Human decision

Fairness of ML decisions

» Adverse impact (AI) ratio with a selection ratio, 0.5

Machine decision

average std. dev. average std. dev.
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- Human decisions are greatly influenced by many factors, such as ... » Human subject study should follow to measure the impact of
» labor market discrimination the cognitive overload introduced by the summarized data of job
« unobserved features, such as decision makers’ past experience and candidate from ML algorithms
intuition

- ML algorithms fails to mimic human decisions because humans
use external data not available to algorithms

« Human decision Al ratio = 1.29 - Reverse discrimination?
* ML decision Al ratio = min (103), max (1.29), average (1.16)

- ML algorithms makes more fair hiring decisions across two
groups
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* An artificially contrived variable intended to be used surrogate for protected class variables (e.g., race, gender, sex, age)
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