Improving the predictions of ML-corrected climate models with novelty detection

Clayton Sanford, Anna Kwa, Oliver Watt-Meyer, Spencer Clark, Noah Brenowitz, Jeremy McGibbon, Christopher Bretherton

NeurIPS 2022 Workshop Tackling Climate Change with Machine Learning

Why are we doing this?

and the second second second second second

Western North America temperature

IPCC AR6 Atlas (CMIP6 models)

A12

Why are we doing this?

Western North America temperature and for precipitation

Models have **less agreement** about future local precipitation trends compared to temperature. This matters!

ML Goal: Improve coarse-model simulations

High fidelity reference

reanalysis or fine-grid (~3km) simulation

Use machine learning to make coarse model behave more like reference

Climate model (25-200 km)

Corrective approach

- Our approach:
 - 1. Nudge coarse-resolution model towards reference dataset
 - 2. Train ML to predict nudging tendencies with input coarse-res state
 - 3. Run coarse-res model, with ML corrective tendency at each step

.

Limitations of corrective approach

- ML corrective tendencies inaccurate & unstable outside training dataset
- Simulation is an online process \rightarrow regularly produces out-of-sample data
- Thus, ML-corrected simulations crash frequently & behave erratically
 - Especially when including wind in ML corrections

Stabilization with novelty detection

- Idea: If simulation drifts out-of-sample, disable ML correction
- Novelty detection is a branch of self-supervised learning that predicts whether a sample belongs to a distribution given draws from distribution

One-Class Support Vector machine (OCSVM)

- Idea: Directly estimate support of distribution by identifying compact region that contains all samples
- Maximize distance between dataset $\{x_1, ..., x_n\} \in \mathbb{R}^d$ and the origin under feature mapping $\Phi: \mathbb{R}^d \to F$
- Radial basis function (RBF) kernel

 $\min_{\substack{w \in F, \boldsymbol{\xi} \in \mathbb{R}^{n}, \rho \in \mathbb{R} \\ \text{subject to}}} \frac{\frac{1}{2} ||w||^{2} + \frac{1}{\nu n} \sum_{i} \xi_{i} - \rho}{(w \cdot \Phi(\mathbf{x}_{i})) \ge \rho - \xi_{i}, \ \xi_{i} \ge 0.}$

...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
.

 Incorporating novelty detection with a One-Class SVM prevents runs from crashing and improves temperature and humidity predictions over simulations with and without ML correction

Time-averaged near-surface temperature biases

 Incorporating novelty detection with a One-Class SVM prevents runs from crashing and improves temperature and humidity predictions over simulations with and without ML correction

	Run	% Novelty	T(K)	SP (mm/day)	PWAT (kg/m^2)
1	Baseline (1)	100%	2.09	1.78	2.79
2	ML-corrected (2) with g_{Tq}	0%	1.86	1.43	3.31
3	ML-corrected with $g_{\text{Tquv}}(\star)$	0%	2.43	3.39	5.33
4	ND ML (3) with g_{Tq} , $\eta_{T,OCSVM}$	2.5%	1.97	1.49	3.65
5	ND ML with $g_{Tquv}, \eta_{T,minmax}$	35.7%	5.15	3.57	10.14
6	ND ML with $g_{Tquv}, \eta_{T,OCSVM}$	40.0%	1.58	1.40	2.66
7	ND ML with $g_{\text{Tquv}}, \eta_{\text{Tq,OCSVM}}$	50.7%	1.53	1.24	2.37

