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Metric Clustering

Goal: Partition data according to similarity.
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Underlying data: Points in R?.

Other examples of low-dimensional inputs: Image segmentation, facility location,
etc.



Metric Clustering Objectives

k-Clustering

Input: data points A in a metric space
Output: set C of k centers that minimizes

D A Icl’élg dist(a, c)P.

k-median is when p = 1, k-means is when p = 2.

In Practice: k-means objective more popular than k-median



Fair Clustering

Individual elements are of different rypes.

Fair Clustering

Goal: Center quality is the same for all types.
No type has a much larger distance to the centers.

Fair k-Median

For each point p, closest center must be at distance at most §(p).

Bicriteria Approximation

«, f-approximation <=> «-approximation of the k-median cost and con-
straints are satisfied up to a factor 3.




Fair k-Median

. k-center or fairness k-median .

Credit Runtime
guarantee guarantee

Alamdari & Shmoys 4 8 polynomial
Humayun et al. - - Q((n?k)>37)
Mahabad & Vakilian 7 84 O((kn)® /€)
Chakrabarty & Swamy 8 8 O(kn*)
Vakilian & Yalginer 3 8+¢ Q(nt)
This work (y > 6) v+1 3+0(e) P07
This work (6 > v > 4) v+4+1 ‘;’1:3 + O(¢g) @O(I/E)
This work 6 O(1) O(nk?)



Our Results

Theorem

Lety > 4 and € > 0. Assuming the problem is feasible (i.e., there exists an

individually fair solution), there is a polynomial-time algorithm for individu-

ally fair k-median with bicriteria guarantee (., y+1), where o, = 34+0(¢)
244

+74_2 + O(e) for 6 > v > 4.
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fory > 6and oy = ;4=

Anchored local Search algorithm:
So < Gonzales Algorithm finds solution that satisfies the cstrt up to a factor ~.
S So
While there exists a solution S’ such that
cost(S’) < (1 — 1/n)cost(S); and
[S\ S| +18"\ S| <2/e; and
and for each p € S, |S" N B(p, §(p))| # 0:
S+ 9
output S
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Our Results: A Faster Algorithm

Theorem

There is an O(nkz)-time algorithm for individually fair k-means with a 6-
approximation for radii and an O(1)-approximation on costs.

Idea: Anchoring as above and k—-means++ sampling of centers to replace.



Our Experimental Results

Sample size vs mean time for adult Sample size vs mean cost for adult
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Mean completion time, cost, and bound ratio for the algorithms on adult dataset
subsampled to different sizes, k = 10. The shades represent the 95% confidence

interval (notice that some algorithms are deterministic). Runs that did not complete
in 1 hour are not reported.



| Thank you for your attention!

Please reach out over email if you have any questions.




