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Metric Clustering

Goal: Partition data according to similarity.

Underlying data: Points inR2.

Other examples of low-dimensional inputs: Image segmentation, facility location,
etc.
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Metric Clustering Objectives

k-Clustering

Input: data points A in a metric space
Output: set C of k centers that minimizes

∑
a∈A min

c∈C
dist(a, c)p.

k-median is when p = 1, k-means is when p = 2.

In Practice: k-means objective more popular than k-median
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Fair Clustering

Individual elements are of different types.

Fair Clustering

Goal: Center quality is the same for all types.
No type has a much larger distance to the centers.

Fair k-Median

For each point p, closest center must be at distance at most δ(p).

Bicriteria Approximation

α, β-approximation ⇐⇒ α-approximation of the k-median cost and con-
straints are satisfied up to a factor β.
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Fair k-Median

Credit
k-center or fairness k-median

Runtime
guarantee guarantee

Alamdari & Shmoys 4∗ 8 polynomial
Humayun et al. - - Ω((n2k)2.37)

Mahabad & Vakilian 7 84 Õ((kn)5/ε)

Chakrabarty & Swamy 8 8 Õ(kn4)
Vakilian & Yalçiner 3 8 + ε Ω(n4)

This work (γ ≥ 6) γ + 1 3 +O(ε) nO(1/ε)

This work (6 > γ > 4) γ + 1 3γ−2
2γ−8

+O(ε) nO(1/ε)

This work 6 O(1) Õ(nk2)
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Our Results

Theorem

Let γ > 4 and ε > 0. Assuming the problem is feasible (i.e., there exists an
individually fair solution), there is a polynomial-time algorithm for individu-
ally fair k-median with bicriteria guarantee (αγ , γ+1), where αγ = 3+O(ε)

for γ ≥ 6 and αγ =
2+ 4

γ−2

2− 4
γ−2

+O(ε) for 6 > γ > 4.

Anchored local Search algorithm:
S0 ← Gonzales Algorithm finds solution that satisfies the cstrt up to a factor γ.
S ← S0

While there exists a solution S′ such that
cost(S′) < (1− 1/n)cost(S); and
|S \ S′|+ |S′ \ S| ≤ 2/ε; and
and for each p ∈ S0, |S′ ∩B(p, δ(p))| 6= ∅:

S ← S′

output S

5



Our Results

Theorem

Let γ > 4 and ε > 0. Assuming the problem is feasible (i.e., there exists an
individually fair solution), there is a polynomial-time algorithm for individu-
ally fair k-median with bicriteria guarantee (αγ , γ+1), where αγ = 3+O(ε)

for γ ≥ 6 and αγ =
2+ 4

γ−2

2− 4
γ−2

+O(ε) for 6 > γ > 4.

Anchored local Search algorithm:
S0 ← Gonzales Algorithm finds solution that satisfies the cstrt up to a factor γ.
S ← S0

While there exists a solution S′ such that
cost(S′) < (1− 1/n)cost(S); and
|S \ S′|+ |S′ \ S| ≤ 2/ε; and
and for each p ∈ S0, |S′ ∩B(p, δ(p))| 6= ∅:

S ← S′

output S

5



Our Results: A Faster Algorithm

Theorem

There is an Õ(nk2)-time algorithm for individually fair k-means with a 6-
approximation for radii and an O(1)-approximation on costs.

Idea: Anchoring as above and k-means++ sampling of centers to replace.
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Our Experimental Results
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(a) Time (secs)
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(b) Cost
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(c) Bound ratio

Mean completion time, cost, and bound ratio for the algorithms on adult dataset
subsampled to different sizes, k = 10. The shades represent the 95% confidence
interval (notice that some algorithms are deterministic). Runs that did not complete
in 1 hour are not reported.
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Thank you for your attention!

Please reach out over email if you have any questions.
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