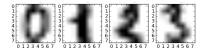
Scalable and Improved Algorithms for Individually Fair Clustering

Hossein Bateni Vincent Cohen-Addad Alessandro Epasto Silvio Lattanzi

Google Research

Metric Clustering

Goal: Partition data according to *similarity*.



Underlying data: Points in \mathbb{R}^2 .

Other examples of low-dimensional inputs: Image segmentation, facility location, etc.

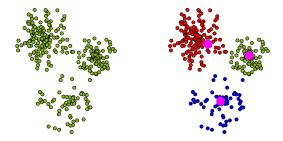
Metric Clustering Objectives

k-Clustering

Input: data points A in a metric space Output: set C of k centers that minimizes

 $\sum_{a \in A} \min_{c \in C} \operatorname{dist}(a, c)^p.$

<u>k-median</u> is when p = 1, <u>k-means</u> is when p = 2.



In Practice: k-means objective more popular than k-median

Fair Clustering

Individual elements are of different types.

Fair Clustering

Goal: Center quality is the same for all types. No type has a much larger distance to the centers.

Fair k-Median

For each point p, closest center must be at distance at most $\delta(p)$.

Bicriteria Approximation

 α, β -approximation $\iff \alpha$ -approximation of the k-median cost and constraints are satisfied up to a factor β .

Fair k-Median

Credit	k-center or fairness guarantee	<i>k</i> -median guarantee	Runtime
Alamdari & Shmoys	4^{*}	8	polynomial
Humayun et al.	-	-	$\Omega((n^2k)^{2.37})$
Mahabad & Vakilian	7	84	$ ilde{O}((kn)^5/\epsilon)$
Chakrabarty & Swamy	8	8	$ ilde{O}(kn^4)$
Vakilian & Yalçiner	3	$8 + \epsilon$	$\Omega(n^4)$
This work $(\gamma \ge 6)$	$\gamma + 1$	$3 + O(\varepsilon)$	$n^{O(1/\epsilon)}$
This work $(6 > \gamma > 4)$	$\gamma + 1$	$\frac{3\gamma-2}{2\gamma-8} + O(\varepsilon)$	$n^{O(1/\epsilon)}$
This work	6	O(1)	$ ilde{O}(nk^2)$

Our Results

Theorem

Let $\gamma > 4$ and $\varepsilon > 0$. Assuming the problem is feasible (i.e., there exists an individually fair solution), there is a polynomial-time algorithm for individually fair k-median with bicriteria guarantee $(\alpha_{\gamma}, \gamma+1)$, where $\alpha_{\gamma} = 3 + O(\varepsilon)$ for $\gamma \ge 6$ and $\alpha_{\gamma} = \frac{2 + \frac{4}{\gamma-2}}{2 - \frac{4}{\gamma-2}} + O(\varepsilon)$ for $6 > \gamma > 4$.

Anchored local Search algorithm:

 $S_0 \leftarrow$ Gonzales Algorithm finds solution that satisfies the cstrt up to a factor γ . $S \leftarrow S_0$ While there exists a solution S' such that $\cot(S') < (1 - 1/n)\cot(S)$; and $|S \setminus S'| + |S' \setminus S| \le 2/\epsilon$; and and for each $p \in S_0$, $|S' \cap B(p, \delta(p))| \neq \emptyset$:

 $S \leftarrow S'$

output S

Our Results

Theorem

Let $\gamma > 4$ and $\varepsilon > 0$. Assuming the problem is feasible (i.e., there exists an individually fair solution), there is a polynomial-time algorithm for individually fair k-median with bicriteria guarantee $(\alpha_{\gamma}, \gamma+1)$, where $\alpha_{\gamma} = 3 + O(\varepsilon)$ for $\gamma \geq 6$ and $\alpha_{\gamma} = \frac{2 + \frac{4}{\gamma-2}}{2 - \frac{4}{\gamma-2}} + O(\varepsilon)$ for $6 > \gamma > 4$.

Anchored local Search algorithm:

 $S_0 \leftarrow$ Gonzales Algorithm finds solution that satisfies the cstrt up to a factor γ . $S \leftarrow S_0$ While there exists a solution S' such that f(S') = f(S) = f(S)

$$\cos(S') < (1 - 1/n)\cos(S);$$
 and
 $|S \setminus S'| + |S' \setminus S| \le 2/\epsilon;$ and
and for each $p \in S_0, |S' \cap B(p, \delta(p))| \neq \emptyset$:
 $S \leftarrow S'$

output S

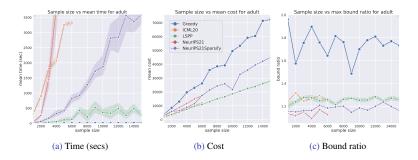
Our Results: A Faster Algorithm

Theorem

There is an $\tilde{O}(nk^2)$ -time algorithm for individually fair k-means with a 6-approximation for radii and an O(1)-approximation on costs.

Idea: Anchoring as above and k-means++ sampling of centers to replace.

Our Experimental Results



Mean completion time, cost, and bound ratio for the algorithms on adult dataset subsampled to different sizes, k = 10. The shades represent the 95% confidence interval (notice that some algorithms are deterministic). Runs that did not complete in 1 hour are not reported.

Thank you for your attention!

Please reach out over email if you have any questions.